Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Journal of Optoelectronics Engineering. 2017, 5(1), 1-6
DOI: 10.12691/joe-5-1-1
Open AccessCase Study

Analysis and Design of a Power Consumed Limiter: Case of the Customers of National Society of Electricity of Congo/Likasi Town

Kankolongo C. Kambaya1, Katond JP. Mbay2 and Diambomba H. Tungadio3,

1Department of Electronics, Institut Supérieur de Pédagogie Technique, ISPT/Likasi, DRC

2Department of Electro-mechanic, University of Lubumbashi, DRC

3Department of Electrical, Electronics and Computer Engineering, University of Pretoria, South Africa

Pub. Date: February 16, 2017

Cite this paper:
Kankolongo C. Kambaya, Katond JP. Mbay and Diambomba H. Tungadio. Analysis and Design of a Power Consumed Limiter: Case of the Customers of National Society of Electricity of Congo/Likasi Town. Journal of Optoelectronics Engineering. 2017; 5(1):1-6. doi: 10.12691/joe-5-1-1


This article presents the fundamental interests and a design of a power limiter that allow the limitation of active power consumed by subscribers of a company that provides electrical power. It allows the National Company of Electricity (SNEL) to fix a power in kW subscribers, after determining their consumption. If a subscriber exceeds the subscribed or contracted power, electric power is cut off for five minutes. Upon resumption, if the subscriber has not decreased its consumption in less than a second, electric power is interrupted again; interruptions will not cease until the subscriber will not reduce consumption.

power limiter active power meter

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  T. Yazawa, K. Koyanagi, M. Takahashi, K. Toba, H. Takigami, M. Urata, Y. Lijima, T. Saitoh, N. amemiya, Y. Shiohara, and T. Ito, “Development of 6.6kV/600A superconducting fault current limiter using coated conductors”, Physica C, vol. 469, pp. 1740-1744, 2009.
[2]  D. Tournier, “Conception, Réalisation et Caractérisation d’un composant limiteur de courant commandé en carbure de silicium et son intégration système,” Thèse de Doctorat, Institut National des Sciences Appliquées de Lyon, 2003.
[3]  P. Tixador, and A. Badel, “Superconducting fault current limiter optimized design”, Physica C, vol. 518, pp. 130-133, 2015.
[4]  L. Chen, Z. Li, C. Deng, H. Liu, Y. Weng, Q. Xu, Z. Wu, and Y. Tang, “Effects of a flux-coupling type superconducting fault current limiter on the surge current caused by closed-loop operation in a 10kV distribution network”, Int. J. of Electrical Power and Energy Systems, vol. 69, pp. 160-166, 2015.
[5]  G. Didier, CH. Bonnard, T. Lubin, and J. Leveque, “Comparison between inductive and resistive SFCL in terms of current limitation and power system transient stability, Electric Power Systems Research, vol. 125, pp. 150-158, 2015.
[6]  C. Zhang, Y. Tang, S. Liang, L. Ren, Z. Wang, and Y. Xu, “Computational study on the steady state impedance of saturated-core superconducting fault current limiter”, Physics Procedia, vol. 81, pp. 195-198, 2016.
[7]  J. Zhu, X. Zheng, M. Qiu, Z. Zhang, J. Li, W. Yuan, “Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system”, Energy Procedia, vol. 75, pp. 716-721, 2015.
[8]  A.R. Devi,, and J.N. Kumar, “Simulation of resistive super conducting fault current limiter and its performance analysis in three phase systems”, Int. J. of Engineering Research and Technology, vol. 2, Is. 11, pp. 411-415, November 2013.
[9]  J.G. Lee, U.A. Khan, H.Y. Lee, S.W. Lim, and B.W. Lee, “Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters”, Physica C: Superconductivity and its Applications, pp. 1-4, 2016.
[10]  I.G. Im, H.S. Choi, and B.I. Jung, “Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer”, Physica C, vol. 494, pp. 339-343, 2013.
[11]  A. Allais, “La protection de réseau : Les limiteurs de courant supraconducteurs,” Nexans France, Conférence SEE: la supraconductivité dans les systèmes électriques, Lyon le 18 Octobre 2012, 23 pages.
[12]  C.S. Song, H. Lee, Y.S. Cho, J. Suh, and G. Jang, “Implementation of superconducting fault current limiter for flexible operation in the power substation”, Physica C, pp. 158-162, 2014.
[13]  L. Ye, and A.M. Campbell, “Case study of HTS resistive superconducting fault current limiter in electrical distribution systems”, Electric Power Systems Research, vol. 77, pp. 534-539, 2007.
[14]  U.A. Khan, J.G. Lee, I.J. Seo, F. Amir, and B.W. Lee, “Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks”, Physica C, vol. 518, pp. 154-158, 2015.
[15]  J.G. Lee, U.A. Khan, J.S. Hwang, J.K. Seong, W.J. Shin, B.B. Park, B.W. Lee, “Assessment on the influence of resistive superconducting fault current limiter in VSC–HVDC system”, Physica C, vol. 504, pp. 163-166, 2014.
[16]  Y. Cointe, “Limiteur Supraconducteur de Courant Continu,” Thèse de Doctorat, Institut National Polytechnique de Grenoble, 13 Décembre 2007.
[17]  H. Radmanesh, S.H. Fathi, and G.B. Gharehpetian, “Novel high performance DC reactor type fault current limiter”, Electric Power Systems Research, vol. 122, pp. 198-207, 2015.
[18]  J. Shi, Y. Tang, C. Wang, Y. Zhou, J. Li, L. Ren, and S. Chen, “Active superconducting DC fault current limiter based on flux compensation”, Physica C, pp. 108-112, 2006.
[19]  J.G. Lee, U.A. Khan, S.W. Lim, W.J. Shin, I.J. Seo, and B.W. Lee, “Comparative study of superconducting fault current limiter both for LLC–HVDC and VSC–HVDC systems”, Physica C, vol. 518, pp. 189-153, 2015.
[20]  Y. He, T. Jiang, C.Y. Du, C.B. Li, A.G. Wu, and Y. Xin, “Control system modelling and simulation of superconducting current limiter with saturated iron core controlled by DC bias current”, IEEE Trans. on Applied Superconductivity, vol. 24, No. 5, Oct. 2014.
[21]  F. ŞTEFĂNESCU, “Etude Numérique d’un Limiteur de Courant de Défaut Supraconducteur Inductif, ” 8th International Conference on Applied and 10th Theoretical Electricity and Symposium on Cryoelectrotechnics and Cryogenics, Boile Herculane, 26-28 October 2006, Annals of the University of Craiova, no.30, 2006, pp. 378-381.
[22]  Y.J. Kim, K.S. Chang, H.C. Jo, Y.S. Yoon, J.H. Lee, H. Lee, and T.K. Ko, “Recovery estimation for over-current test of non-inductive fault current limiters using numerical analysis”, Cryogenics, vol. 51, pp. 261-265, 2011.
[23]  W.T.B de Sousa, A. Polasek, R. Dias, C.F.T. Matt, and R. de Andrade Jr, “Thermal-electric analogy for simulations of superconducting fault current limiters”, Cryogenics, vol. 62, pp. 97-109, 2014.
[24]  B. Mahdad, and K. Srairi, “Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability”, Physica C, vol. 495, pp. 160-168, 2013.
[25]  W. Gans, A. Albertini, and A. Longo, “Smart meter devices and the effect of feedback on residential electricity consumption: Evidence from a natural experiment in Northern Ireland”, Energy Economics, vol. 36, pp. 729-743, 2013.
[26]  J. Carroll, S. Lyons and E. Denny, “Reducing household electricity demand through smart metering: The role of improved information about energy saving”, Energy Economics, vol. 45, pp. 234-243, 2014.
[27]  J.L. Viegas, S.M. Vieira, R. Melicio, and V.M.F. Mendes, “Classification of new electricity customers based on surveys and smart metering data”, Energy, vol. 107, pp. 804-817, 2016.
[28]  F. Klopfert, “L’apport des compteurs intelligents à une consommation plus durable de l’électricité,” Thèse de Maitrise, Université Libre de Bruxelles, 4 Aout 2008.
[29]  B. Mack, and K.T. Mai, “An action theory-based electricity saving web portal for households with an interface to smart meters”, Utilities Policy, pp. 1-13, 2016.
[30]  S. Marrone, and U. Gentile, “Finding resilient and energy-saving control strategies in smart homes”, Procedia Computer Science, vol. 83, pp. 976-981, 2016.
[31]  S. D’oca, S.P. Corgnati, and T. Buso, “Smart meters and energy savings in Italy: Determining the effectiveness of persuasive communication in dwellings”, Energy Research & Social Science, vol. 3, pp. 131-142, 2014.
[32]  D. Savic, L.V. Lyroudia, and Z. Kapelan, “Smart meters, smart water, smart societies: The iWIDGET project”, Procedia Engineering, vol. 89, pp. 1105-1112, 2014.
[33] (Nexans, ”Communiquée de presse,” Paris, 31Mars 2014).
[34]  M. Aswathi, R. Gandhiraj, and K.P. Soman, “Application and application of smart meter data along with RTL SDR and GNU radio”, Procedia Technology, vol. 21, pp. 317-325, 2015.
[35]  R. Elangovan, and U.K. Kommuri, “Low loss high isolation NEMS/MEMS switch for high frequency RF applications”, Sensors & Transducers, vol. 186, Is. 3, pp. 134-139, March 2015.
[36]  J. Gauvin, “Développement de limiteurs de puissance radiofréquence a MEMS-RF”, Thèse de Doctorat, Université de Limoges, 14 Décembre 2012.
[37]  PIERRON, “Energie électrique – compteur, ” Pierron Education, 2008, pp. 7.
[38]  M. Brynart et F. Grevisse, “Protection du consommateur Dispositifs and procédures de protection du Consommateur d’électricité,” Bruxelles environnement, 2013, pp. 17.
[39]  A.C. Santos, J.M.P. Lazoros, C.P. Rodriguez, and E.C. Fernandez, “Performance analysis of a superconducting fault current limiter in a power distribution substation”, Electric Power Systems Research, vol. 136, pp. 89-99, 2016.
[40]  S. Seo, S.J. Kim, Y.H. Moon, and B. Lee, “A hybdrid superconducting fault current limiter for enhancing transient stability in Korean power systems”, Physica C, vol. 494, pp. 331-334, 2013.
[41]  J.M. Pina, P. Pereira, A. Pronto, P. Arsenio, and T. Silva, “Modelling and simulation of inductive fault current limiters”, Physics Procedia, vol. 36, pp. 1248-1253, 2012.
[42]  C.H. Kon, and J. Leveque, “Modélisation et impact de limiteurs supraconducteurs de courants de défaut sur les réseaux électriques”, Sciences, Technologiess et Developpement, vol. 14, pp. 1-8, November 2013.
[43]  N. SAAD, “Modélisation et simulation du limiteur de courant supraconducteur,” Thèse de doctorat, 04 Décembre 2013.
[44]  A. Mahmoudian, M. Niasati, and M.A. Khanesar, “Multi objective optimal allocation of fault current limiters in power system”, Int. J. Electrical Power and Energy Systems, vol. 85, pp. 1-11, 2017.
[45]  A. Morandi, “State of the art of superconducting fault current limiters and their application to the electric power system”, Physica C, vol. 484, pp. 242-247, 2013.
[46]  S. Lee, J. Yoon, B. Yang, Y. Moon, and B. Lee, “Analysis model development and specification proposal of 154kV SFCL for the application to a live grid in South Korea”, Physica C, vol. 504, pp. 148-152, 2014.
[47]  D. Tournier, P. Godignon, J. Montserrat, D. Planson, C. Raynaud, J.P. Chante, JF de Plama, and F. Sarrus, “A 4H-SIC high-power density VJFET as controlled cuurent limiter”, IEEE Transaction on Industry Applications, vol. 39, no. 5, September 2003.