Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: https://www.sciepub.com/journal/joe Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Journal of Optoelectronics Engineering. 2014, 2(1), 7-20
DOI: 10.12691/joe-2-1-2
Open AccessArticle

Tunable Photonic Band Gap in a One-Dimensional Lattice Substituted Multiferroic - Dielectric Photonic Crystals in Near Infrared Region

Sanjay Srivastava1,

1Department of Materials Science and Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, India

Pub. Date: March 06, 2014

Cite this paper:
Sanjay Srivastava. Tunable Photonic Band Gap in a One-Dimensional Lattice Substituted Multiferroic - Dielectric Photonic Crystals in Near Infrared Region. Journal of Optoelectronics Engineering. 2014; 2(1):7-20. doi: 10.12691/joe-2-1-2

Abstract

This document gives formatting instructions for authors preparing papers for publication in the journal. Authors are encouraged to prepare manuscripts directly using this template. This template demonstrates format requirements for the JournalIn order to investigate band gap tunability in polar oxides, the photonic band gap of antiferromagnetic-dielectric binary photonic crystal can be significantly enlarged by the substitution of the lattice atoms with other suitable atoms which forms a solid solution with the parent lattice. In this paper we measured the optical properties of a series of Bi (Fe1−xMnx) O3 thin films. Two substrates with different orientation of the crystal plane were selected which were also acting as dielectric materials in multilayer photonic crystals. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members; as a result it demonstrates straightforward band gap tunability in this system. First, the band gap enlargement due to the addition of the Mn+3 atoms in BFO lattice is examined in the case of normal incidence. Next, in the oblique incidence, a wider omnidirectional band gap can be obtained beyond 30o angle of incidence. By substitution of Mn+3 in BFO lattice, enhanced band gap was observed in the different optical region due to a large band gap of the existing materials.

Keywords:
photonic crystals multiferroic tunability and optical band gap lattice substitution

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 13

References:

[1]  Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059, 1987.
 
[2]  John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol. 58, 2486, 1987.
 
[3]  Suthar, B. and A. Bhargava, “Tunable multi-channel filtering using 1-D photonic quantum well structures,” Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
 
[4]  Bhargava, A. and B. Suthar, “Optical switching properties of kerr- nonlinear chalcogenide photonic crystal,” J. of Ovonic Research, Vol. 5, No. 6, 187, 2009.
 
[5]  Li, B., Zhou J., Li L., Wang X. J., Liu X. H., and Zi J., “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett., Vol. 83, 4704, 2003.
 
[6]  Kumar, V., Singh K. S., and Ojha S. P., “Broadening of omnidirectional photonic band gap in Si-based one-dimensional photonic crystals,” Progress In Electromagnetics Research M, Vol. 14, 101-111, 2010.
 
[7]  Wang, X., Kempa K., Ren Z. F., and Kimball B., “Rapid photon flux switching in two-dimensional photonic crystals,” Appl. Phys. Lett., Vol. 84, 1817, 2004.
 
[8]  Fink, Y., Winn J. N., Fan S., Chen C., Michel J., Joannopoulos J. D., and Thomas E. L., “A dielectric omnidirectional reflector,” Science, Vol. 282, 1679-1682, 1998.
 
[9]  Chigrin, D. N., Lavrinenko A. V., Yarotsky D. A., and Gaponenko S. V., “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A: Mater.Sci. Process. Vol. 68, 25-28, 1999.
 
[10]  Yablonovitch, E., “Photonic band-gap structures,” J. Opt. Soc. Amer. B, Vol. 10, 283-295, 1993.
 
[11]  Li, H. H., “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data, Vol. 9, 561, 1980.
 
[12]  Xu X. S., Ihlefeld J. F., Lee J. H., Ezekoye O. K., Vlahos E., Ramesh R., Gopalan V., Pan X. Q., Schlom D. G., and Musfeldt J. L., “Tunable band gap in Bi (Fe1−xMnx)O3 films” Applied Physics Letters 96, 192901, 2010.
 
[13]  Seema H., Durrani S. K., Saeed K., Mohammadzai I. and Hussain N. “Auto –Combustion synthesis and characterization of Multi-ferroic (BiFeO3) Materials” JPMS Conference Issue, Materials 2010
 
[14]  Carvalho T.T., Tavares P.B. “Synthesis and thermodynamic stability of multiferroic BiFeO3” Materials Letters 62, 3984-3986, 2008.
 
[15]  Zhao Y. Miao J. Zhang X. Chen Y. Xu X. G. Jiang Y. “Ultra-thin BiFeO3 Nanowires prepared by a Sol–gel combustion method: an investigation of its multiferroic and optical properties” J Mater Sci: Mater Electron (2012) 23:180-184.
 
[16]  Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
 
[17]  Kumar Amit, Ram Rai C, Podraza Nikolas J., Denev Sava, Ramirez Mariola, Chu Ying-Hao, Martin Lane W., Ihlefeld,Jon Heeg T., Schubert J., Schlom Darrell G., Orenstein J., Ramesh R., Collins Robert W., Musfeldt, Janice L. and Gopalan V., “Linear and nonlinear optical properties of BiFeO3” Applied Physics Letters 92, 121915 (2008).
 
[18]  Lee J. H., Ke X., Misra R., Ihlefeld J. F., Xu X. S., Mei Z. G., Heeg T., Roeckerath M., Schubert J., Liu Z. K., Musfeldt J. L., Schiffer P., and Schlom D. G. “Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy” Applied Physics Letters 96, 262905 (2010).
 
[19]  Xu X. S., Ihlefeld J. F., Lee J. H., Ezekoye O. K., Vlahos E., Ramesh R., Gopalan V., Pan X. Q., Schlom D. G., and Musfeldt J. L., “Tunable band gap in Bi(Fe1−xMnx)O3 films” Applied Physics Letters 96, 192901 (2010).
 
[20]  Lee, J. H. Ke X., Misra R., Ihlefeld J. F., Xu X. S., Mei Z. G., Heeg T., Roeckerath M., Schubert J., Liu Z. K., Musfeldt J. L., Schiffer P., and Schlom D. G. “Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy” Applied Physics Letters 96, 262905 (2010).
 
[21]  Xu X. S., Ihlefeld J. F., Lee J. H., Ezekoye O. K., Vlahos E., Ramesh R., Gopalan V., Pan X. Q., Schlom D. G., and Musfeldt J. L.. “Tunable band gap in Bi (Fe1−xMnxO3) films” Applied Physics Letters, 192901 (2010).