Journal of Mathematical Sciences and Applications. 2017, 5(1), 19-23
DOI: 10.12691/jmsa-5-1-3
Open AccessArticle
Khalid Boutahir1 and Ali Hafidi2,
1Département de Mathématiques & Informatique, Université My Ismail, B. P. 11 201 Zitoune, Meknès, MAROC
2Faculté des Sciences et Techniques, B.P.509, Boutalamine Errachidia, MAROC
Pub. Date: June 09, 2017
Cite this paper:
Khalid Boutahir and Ali Hafidi. Family of Functional Inequalities for the Uniform Measure. Journal of Mathematical Sciences and Applications. 2017; 5(1):19-23. doi: 10.12691/jmsa-5-1-3
Abstract
We consider on the interval [-1,1] the heat semigroup
generated by the Legendre operator
acting on the Hilbert space
with respect to the uniform measure
By means of a simple method involving some semigroup techniques, we describe a large family of optimal integral inequalities with the Poincaré and logarithmic Sobolev inequalities as particular cases.Keywords:
heat semigroup legendre operator spectral gap poincaré inequality sobolev inequality logarithmic sobolev inequality φ-entropy inequality
This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/
References:
[1] | D.Bakry, M. Émery, Diffusions hypercontractives. Séminaire de probabilities de Strasbourg 19 (1985): 177-206. |
|
[2] | W. Beckner, A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 1989; 105 (2): 397-400. |
|
[3] | A.Bentaleb,S. Fahlaoui, A.Hafidi Psi-entropy inequalities for the Ornstein-Uhlenbeck semigroup,Semigroup Forum, 2012; 85 (2): 361-368. |
|
[4] | A.Bentaleb,S.Fahlaoui, a family integral inequalities on the circle S1, Proc. Jpn. Acad., Ser. A 2010; 86: 55-59. |
|
[5] | F. Bolley, I. Gentil, Phi-entropy inequalities for diffusion semigroups. J. Math.Pures Appl. 2010; 93 (5): 449-473. |
|
[6] | J. Doulbeault, I. Gentil, and A. Jüngel, A logarithmic fourth-order parabolic equation and related logarithmic sobolev inequalitiesn Comm. Math. Sci. 2006; 4 (2): 275-290. |
|
[7] | L.Gross,logarithmic Sobolev inequalities, Amer.J.Math. 1975; 97 (4), 1061-1083. |
|
[8] | M. Ledoux, The geometry of Markov diffusion generators. Probability theory. Ann. Fac. Sci. Toulouse Math. 2000; 6(9)(2): 305-366. |
|
[9] | E. Nelson, The free Markov field. J. Funct. Anal. 1973; 12: 211-227. |
|
[10] | F-Y. Wang, A generalisation of Poincaré and logarithmic Sobolev inequalites, Potential Anal.22(2005) no 1, 1-15. |
|