[1] | Annapoorani. N., park. J.Y, Balachandtran. K, Existence results for impulsive neutral functional integro-differential equations with infinitedelay, Nonlinear Anal. (2009). |
|
[2] | Balakrishnan, A. V., “Applications of Mathematics: Applied Functional Analysis”, by Springer -verlag New York, Inc., (1976). |
|
[3] | Balasubramaniam. P., Existence of solution of functional stochastic differential hnclus- ion,Tamkang J.Math. 33 (2002) 35-43. |
|
[4] | Chang .Y. K., Controllability of impulsive functional systems with infinite delay in Banach spaces, Chaos solitons Fractals 33 (2007) 1601-1609. |
|
[5] | Chang Y. K, A. Anguraj, M. M. Mallika Arjunan,Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybrid Syst. 2 (2008) 209-218. |
|
[6] | Cao.X. Fu, Y., Existence for neutral impulsive differential inclusions with nonloca l conditions, Nonlinear Anal.68 (2008). 3707-3718. |
|
[7] | Dhage. B.C, Multi-valued mappings and fixed points II, Tamkang J.Math.37. (2006). 27-46. |
|
[8] | Diagana, T., “An Introduction to Classical and P-ADIC Theory of Linear Operators and Application”, Nova Science Publishers, (2006). |
|
[9] | Goldstein J. A., “Semigroup of linear operators and applications”, Oxford Univ. Press, New York, 1985. |
|
[10] | Li K., “Stochastic Delay Fractional Evolut- ions Driven by Fractional Brownian Motion”, Mathematical Method in the Applied Sciences, 2014. |
|
[11] | Lin, A., Hu. L., “Existence results for Impulsive Neutral Stochastic Functional Integro-differential Inclusions with Nonlocal Initial Conditions”, J. Computers and Mathematics with Applications, 59 (2010). 64-73. |
|
[12] | Lasikcka, I., “Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations”, J. Deferential Equation, 47, pp. 246-272, (1983). |
|
[13] | Madsen Henrik, “ito integrals”, Aalborg University, Denmark, 2006. |
|
[14] | Nouyas. S. K., Existence results for impul- sive partial neutral functional differential inclusions, Electron. J. Differential Equations 30 (2005) 1-11. |
|
[15] | Naito. T, Hino.Y, Murakami S., Functional –differential equations with infinite delay, in :Lecture Notes in Mathematics, Vol. 1473, springer-verlag, Berlin, 1991. |
|
[16] | Nieto. J.J., Y.K. Chang., Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators, Numer, Funct. Anal. Optim. 30 (2009). 227-244. |
|
[17] | Opial., A.Lasota,Z., Application of the kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map, Bull. Acad.polon. Sci. Ser. Sci. Math. Astronom. phys. 13 (1965) 781-786. |
|
[18] | Pazy. A., Semigroups of linear operators and applications to partial differential equations, in: Applied Methematical Sciences, vol. 44, springer verlag, New York, (1983). |
|
[19] | Pritchard. A.J, Grimmer. R, Analytic resolvent operators for integral equations in a Banach space, J. Differential Equations 50. (1983). 234-259. |
|
[20] | Ren.Y, Hu. L, Existence results for impulsive neutral stochastic functional integro -differential equations with infinite delays, Acta Appl. Math. (2009). |
|
[21] | Travis, C. C. and Webb, G. F., “Compactness, regularity and uniform continuity properties of strongly continuous cosine families”, Houston J. Math. 3(4) (1977), 555-567. |
|
[22] | Travis, C. C. and Webb, G.F., “Cosine famil- ies and abstract nonlinear second order differential equtions”, Acta Math. Acad. Sci. Hungaricae, 32 (1978), 76-96. |
|
[23] | Vinayagam. D., P. Balasubramanian., Exist- ence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space, Stochastic Anal.Appl.23. (2005). 137-151. |
|
[24] | Zabczyk. J, Da Prato .G, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. |
|