Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Prof. Dr. Alireza Heidari, Ph.D., D.Sc.
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2017, 5(1), 32-38
DOI: 10.12691/jmpc-5-1-4
Open AccessArticle

Investigation of Optical Properties of Solochrome Dark Blue Dye Doped Polymer Films

Imad Al - Deen Hussein Ali Al - Saidi1, and Raghad Jabar1

1Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq

Pub. Date: August 01, 2017

Cite this paper:
Imad Al - Deen Hussein Ali Al - Saidi and Raghad Jabar. Investigation of Optical Properties of Solochrome Dark Blue Dye Doped Polymer Films. Journal of Materials Physics and Chemistry. 2017; 5(1):32-38. doi: 10.12691/jmpc-5-1-4


The optical properties of the pure poly(methylmethcrylate) (PMMA) polymer film and PMMA polymer films doped with Solochrome Dark Blue dye at different concentrations were investigated. The films were prepared using the casting technique. The optical absorption and transmission spectra of these films were recorded in the wavelength range 300 - 900 nm for different concentrations using UV-Vis double - beam spectrophotometer. The optical parameters of the Solochrome Dark Blue dye - doped polymer films, reflectance (R), absorption coefficient (α), extinction coefficient (κ), refractive index (n), optical and electrical conductivities (σopt and σelect), and optical energy band gap (Eg), were calculated. The effect of the dye concentration on these parameters was studied. The obtained results show that the Solochrome Dark Blue dye is a promising material for applications in photonic and optoelectronic devices.

optical properties optical parameters Solochrome Dark Blue dye dye - doped polymer films optical energy band gap

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 10


[1]  Kim, D. Y., Cho, H. N. and Kim, C. Y., “Blue Light Emitting Polymers”, Progress in Polymer Science, 25 (2000), 1089-1139.
[2]  S. C. Lo and P. L. Burn, “Development of Dendrimers: Macromolecules for Use in Organic Light-Emitting Diode and Solar Cells”, Chemical. Reviews, 107 (2007), 1097-1116.
[3]  S.-L Yeh, C.-Y. Zhu, and S.-W. Kuo, “Transparent Heat - Resistant PMMA Copolymers for Pacing Light-Emitting Diode Materials”, Polymers, 7 (2015), 1379-1388.
[4]  W. Wu, et. al., “Efficient and Stable Dyesensitized Solar Cells Based on Phenothiazine Sensitizers with Thiophene Units”, J. Mater. Chem., 20 (2010), 1772-1779.
[5]  S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, and H. Tian, “New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 114 (2010), 1343-1349.
[6]  K. D. Seo, et. al., “Coumarin Dyes Containing Low-Band-Gap Chromophores for Dye-Sensitised Solar Cells”, Dyes and Pigments, 90 (2011) 304-310.
[7]  M. Fitra, I. Daut, N. Gomesh, M. Irwanto, and Y.M. Irwan, “Dye Solar Cell using Syzigium Oleina Organic Dye”, Energy Procedia, 36 (2013), 341-348.
[8]  A. Sacco, et. al., “Dye-Sensitized Solar Cell for a Solar Concentrator System”, Solar Energy, 125 (2016), 307-313.
[9]  G. Harsanyi, Polymer Films in Sensor Applications: Technology, Materials, Devices and their Applications (Technomic Publishing Company Inc., Pennsylvania, USA, 1995).
[10]  J. M. Hales, S. Barlow, H. Kim, S. Mukhopadhyay, J. - L. Bredas, J. W. Perry, and S. R. Marder, “Design of Organic Chromophores for All - Optical Signal Processing Applications”, Chem. Mater., 26 (2014), 549-560.
[11]  F. Z. Henari and S. Cassidy, Nonlinear Optical Properties and All - Optical Switching of Congo Red in Solution, Optik, 123 (2013), 711-714.
[12]  I. Al-D. H. Al-Saidi, and S. Al-D. Abdulkareem, “Nonlinear Optical Properties and Optical Power Limiting of Leishman Dye Using Z- Scan Technique. J. of Mater. Sci.: Mater. Electron., 20 (2015), 2713-2718.
[13]  Imad Al - Deen Hussein A. Al - Saidi and Saif Al - Deen Abdulkareem, “Study of Nonlinear Optical Properties and Optical Power Limiting of Leishman Dye Using Z-Scan Technique”, Indian J. Phys., 89 (2015), 1199-1203.
[14]  Imad Al - Deen Hussein A. Al - Saidi and Saif Al - Deen Abdulkareem, “Nonlinear Optical Properties and Optical Power Limiting Effect of Giemsa Dye Polymer Films”, Opt. Laser Technol., 82 (2016), 150-156.
[15]  Y. Guo, C. K. Kao, E. H. Li, and K.S. Chang, Nonlinear Photonics: Nonlinearities in Optics, Optoelectronics and Fiber Communications (The Chinese University Press and Springer-Verlag, Berlin, Germany, 2002).
[16]  J. Zyss, (Ed.), Molecular Nonlinear Optics: Materials, Physics, Devices (Academic Press, INC., New York, USA, 1994).
[17]  H. S. Nalwa, (Ed.), Handbook of Advanced Electronic and Photonic Materials and Devices (Academic Press, New York, 2001).
[18]  M. Cada, “Nonlinear optical devices”, Opt. Pur. y Apl. 38 (2005), 1-10.
[19]  O. Ostroverkhova, (Ed.), Handbook of Organic Materials for Optical and Opto-electronic Devices: Properties and Applications (Woodhead Publishing Ltd., UK, 2013).
[20]  T. Kobayashi, (Ed.), Nonlinear Optics of Organics and Semiconductors, Springer Proceedings in Physics, Vol. 36, (Springer-Verlag, Berlin, Germany, 1989).
[21]  W. Nie, “Optical Nonlinearity: Phenomena, Applications, and Materials”, Adv. Mater., 5 (1993), 520-545.
[22]  P. Günter, (Ed.), Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, Germany, 2000).
[23]  H. Zollinger, Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 3rd ed, (Wiley-VCH, Cambridge, 2003).
[24]  H. G. Elias, An Introduction to Polymer Science, (Weinheim, NewYork, USA, 1997).
[25]  N. G. C. McCrum, P. C. Buckley, and B. Bucknall, Principles of Polymer Engineering, 2nd ed., (Oxford University Press, New York, USA, 1997).
[26]  K. -S. Lee, (Ed.), Advances in Polymer Science, Vol. 158, (Springer-Verlag, Berlin / Heidelberg , Germany, 2002).
[27]  L. H. Sperling, Introduction to Physical Polymer Science, (John Wiley &Sons, Inc., Hoboken, 2006).
[28]  C. Fleischmann, M. Lievenbrück, and H. Ritter, “Polymers and Dyes: Developments and Applications”, Polymers, 7 (2015), 717-746.
[29]  A. Costela, et. al., “Laser Performance of Pyrromethene 567 Dye in Solid Polymeric Matrices with Different Cross-Linking Degrees”, Journal of Applied Physics, 90, (2001), 3159-3166.
[30]  I. Eckertova, Physics of Thin Films, 2nd ed., (Plenum Press, NewYork, USA,1986)
[31]  H. Frey and H. R. Khan, (Eds.), Handbook of Thin Film Technology (Springer-Verlag, Berlin, Germany, 2015).
[32]  K. S. Kim, H. W. Kim, and N. H. Kim, “Structural Characterization of ZnO Film grown on SiO by the RF Magnetron Sputtering”, Physica B. 334 (2003), 343-346.
[33]  F. S. Chien, C. R. Wang, Y. L. Chain, and R. J. Wu, “Fast Response Ozone Sensors with ZnO Nanorods Grown by Chemical Vapor Deposition”, Sens. Actuators B: Chemical, 144 (2010). 120-125.
[34]  B. L. Zhu, X. Z. Zhao, F. H. Su, and X. G. Wu, “Low Temperature Annealing Effect on the Structure and Optical Properties of ZnO FIlm Grown by Pulsed Laser Deposition”, Vacuum, 84 (2010). 1280-1286.
[35]  Z. R. Khan, M. S. Khan, M. Zulfequar, and M. S. Khan, “Optical and Structural Proper-2 Ties of ZnO thin Films Fabricated by Sol - Gel Method, Mater. Sci. Appl., 2 (2011). 340 -345.
[36]  N. F. Mott, and A. E. Davis, Electronic Process in Non-Crystalline Materials, 2nd ed., (University Press, Oxford, UK, 1979).
[37]  D. E. Gray, (Ed.), American Institute of Physics Handbook, 3rd ed., (McGrow Hill Book Co., New York, USA, 1982).
[38]  J. I. Pankove, Optical Processes in Semiconductors (Prentice Hall, New York, USA, 1971).
[39]  T. S. Moss, Optical Properties of Semiconductors (Academic Press, New York, USA, 1974).
[40]  J. Tauc, Amorphous and Liquid Semiconductors, Vol. 159 (Plenum Press, New York, USA, 1974).