[1] | Jaramillo, D.; Alvarez, G.; Díaz, C.; Pérez, S.; Saldaña, J. M.; Sierra, L.; López, B. L.; Moreno-Zuria, A.; Mohamedi, M.; Palacio, R. Porous Carbonaceous Materials Simultaneously Dispersing N, Fe and Co as Bifunctional Catalysts for the ORR and OER: Electrochemical Performance in a Prototype of a Zn–Air Battery. Dalton Transactions 2024, 53 (7), 3143–3158. |
|
[2] | Ran, Y.; Xu, C.; Ji, D.; Zhao, H.; Li, L.; Lei, Y. Research Progress of Transition Metal Compounds as Bifunctional Catalysts for Zinc-Air Batteries. Nano Res. Energy 2024, 3, e9120092. |
|
[3] | Zhang, X.; Wang, L.; Fu, H. Recent Advances in Rechargeable Zn-Based Batteries. Journal of Power Sources 2021, 493, 229677. |
|
[4] | Guo, Y.-F.; Zhao, S.; Zhang, N.; Liu, Z.; Wang, P.-F.; Zhang, J.; Xie, Y.; Yi, T.-F. Advanced Design Strategies for Fe-Based Metal-Organic Frameworks-Derived Electrocatalysts toward High-Performance Zn-Air Batteries. Energy & Environmental Science 2024. |
|
[5] | Lakhan, M. N.; Hanan, A.; Shar, A. H.; Ali, I.; Wang, Y.; Ahmed, M.; Aftab, U.; Sun, H.; Arandiyan, H. Transition Metals-Based Electrocatalysts for Alkaline Overall Water Splitting: Advancements, Challenges, and Perspectives. Chemical Communications 2024. |
|
[6] | Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical reviews 2017, 117 (15), 10121–10211. |
|
[7] | Li, S.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Co-Based Bifunctional Electrocatalysts for Energy Conversion and Storage: Current Status and Perspectives. Journal of Materials Chemistry A 2019, 7 (32), 18674–18707. |
|
[8] | De Koninck, M.; Marsan, B. MnxCu1− XCo2O4 Used as Bifunctional Electrocatalyst in Alkaline Medium. Electrochimica Acta 2008, 53 (23), 7012–7021. |
|
[9] | De Koninck, M.; Poirier, S.-C.; Marsan, B. CuxCo3− xO4 Used as Bifunctional Electrocatalyst: Physicochemical Properties and Electrochemical Characterization for the Oxygen Evolution Reaction. Journal of The Electrochemical Society 2006, 153 (11), A2103. |
|
[10] | De Koninck, M.; Poirier, S.-C.; Marsan, B. CuxCo3− xO4 Used as Bifunctional Electrocatalyst: II. Electrochemical Characterization for the Oxygen Reduction Reaction. Journal of The Electrochemical Society 2007, 154 (4), A381. |
|
[11] | Kleitz, F.; Hei Choi, S.; Ryoo, R. Cubic Ia3d Large Mesoporous Silica: Synthesis and Replication to Platinum Nanowires, Carbon Nanorods and Carbon NanotubesElectronic Supplementary Information (ESI) Available: TEM Images of Mesoporous Cubic Silica and Pt Networks, XRD Patterns during Forma. Chemical Communications 2003, No. 17, 2136. |
|
[12] | Li, Z.; Hou, B.; Xu, Y.; Wu, D.; Sun, Y.; Hu, W.; Deng, F. Comparative Study of Solgel-Hydrothermal and Solgel Synthesis of Titania–Silica Composite Nanoparticles. Journal of Solid State Chemistry 2005, 178 (5), 1395–1405. |
|
[13] | Rumplecker, A. Host-Guest Chemistry of Mesoscopically Ordered Porous Materials. Ruhr University Bochum, 2007. |
|
[14] | Kirsanova, M. A.; Okatenko, V. D.; Aksyonov, D. A.; Forslund, R. P.; Mefford, J. T.; Stevenson, K. J.; Abakumov, A. M. Bifunctional OER/ORR Catalytic Activity in the Tetrahedral YBaCo4O7.3 Oxide. Journal of Materials Chemistry A 2019, 7 (1), 330–341. |
|
[15] | Zan, L.; Amin, H. M. A.; Mostafa, E.; Abd-El-Latif, A. A.; Iqbal, S.; Baltruschat, H. Electrodeposited Cobalt Nanosheets on Smooth Silver as a Bifunctional Catalyst for OER and ORR: In Situ Structural and Catalytic Characterization. ACS Applied Materials & Interfaces 2022, 14 (50), 55458–55470. |
|
[16] | Wang, H.-Y.; Hung, S.-F.; Chen, H.-Y.; Chan, T.-S.; Chen, H. M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. Journal of the American Chemical Society 2016, 138 (1), 36–39. |
|
[17] | Wang, W.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A.; Huotari, S.; Yu, M.; Geng, B. Mass-production of Mesoporous MnCo2O4 Spinels with Manganese (IV)-and Cobalt (II)-rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis. Angewandte Chemie 2017, 129 (47), 15173–15177. |
|
[18] | Gautier, J. L., Trollund, E., Ríos, E., Nkeng, P., Poillerat, G.. Characterization of thin CuCo2O4 films prepared by chemical spray pyrolysis. Study of their electrochemical stability by ex situ spectroscopic analysis. Journal of Electroanalytical Chemistry, 1997, 428(1-2), 47-56. |
|
[19] | Gautier, J. L., Rios, E., Gracia, M., Marco, J. F., Gancedo, J. R. Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3−xO4 (1≥ x≥ 0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Films, 1997, 311(1-2), 51-57. |
|
[20] | De Koninck, M.. PhD, University of Québec; Montréal, 2007. |
|
[21] | Kim, M. S.; Lim, E.; Kim, S.; Jo, C.; Chun, J.; Lee, J. General Synthesis of N‐Doped Macroporous Graphene‐Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium‐Ion Hybrid Supercapacitors. Advanced Functional Materials 2017, 27 (3), 1603921. |
|
[22] | Zhao, H.; Zhou, X. X.; Pan, L. Y.; Wang, M.; Chen, H. R.; Shi, J. L. Facile Synthesis of Spinel Cu1.5Mn1.5O4 Microspheres with High Activity for the Catalytic Combustion of Diesel Soot. RSC Advances 2017, 7 (33), 20451–20459. |
|
[23] | Nabae, Y.; I. Yamanaka; Otsuka, K. No Title. Appl. Catal. A, 2005, 280, 149. |
|
[24] | Wu, M.; Zhang, L.; Gao, J.; Zhou, Y.; Zhang, S.; Chen, A. Facile Conversion of the Surface Layers of Graphite to Capacitive Manganese Oxide Coatings. Journal of The Electrochemical Society 2008, 155 (5), A355. |
|
[25] | Strohmeier, R.; Brian, H.; David, M. Surf Ace Spectroscopic Characterization of Mn/AI,O, Catalysts. 1984, 9, 4922–4929. |
|
[26] | Jiang, H., Ma, J., Li, C., Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chemical communications, 2012, 48(37), 4465-4467. |
|
[27] | Ruan, M.; Wei, X.; Chen, H.; Wang, L.; Li, T.; Wang, H.; Yang, D.; Guo, M. Promotion of Oxygen Evolution through the Modification of Co-O Bond in Spinel NiCo2O4. Journal of Physics and Chemistry of Solids 2024, 189, 111955. |
|
[28] | Rebekah, A.; Kumar, E. A.; Viswanathan, C.; Ponpandian, N. Effect of Cation Substitution in MnCo2O4 Spinel Anchored over RGO for Enhancing the Electrocatalytic Activity towards Oxygen Evolution Reaction (OER). International Journal of Hydrogen Energy 2020, 45 (11), 6391–6403. |
|
[29] | Tsai, C.-C.; Teng, H. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chemistry of Materials 2004, 16 (22), 4352–4358. |
|
[30] | Lafont, M. U., PhD, National School of Chemistry, University of Montpellier, 2003. |
|
[31] | Cao, L.; Lu, M.; Li, H. L. Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance. J. Electrochem. Soc.(2005) 152, A871. |
|
[32] | Cabo, M.; Pellicer, E.; Rossinyol, E.; Solsona, P.; Castell, O.; Suriñach, S.; Baró, M. D. Influence of the Preparation Method on the Morphology of Templated NiCo2O4 Spinel. Journal of Nanoparticle Research 2011, 13, 3671–3681. |
|
[33] | Grewe, T.; Deng, X.; Tüysüz, H. Influence of Fe Doping on Structure and Water Oxidation Activity of Nanocast Co3O4. Chemistry of materials 2014, 26 (10), 3162–3168. |
|
[34] | Abidat, I.; Bouchenafa-Saib, N.; Habrioux, A.; Comminges, C.; Canaff, C.; Rousseau, J.; Napporn, T. W.; Dambournet, D.; Borkiewicz, O.; Kokoh, K. B. Electrochemically Induced Surface Modifications of Mesoporous Spinels (Co3O4−δ, MnCo2O4−δ, NiCo2O4−δ) as the Origin of the OER Activity and Stability in Alkaline Medium. Journal of Materials Chemistry A 2015, 3 (33), 17433–17444. |
|
[35] | Cabo, M.; Pellicer, E.; Rossinyol, E.; Estrader, M.; López-Ortega, A.; Nogués, J.; Castell, O.; Suriñach, S.; Baró, M. D. Synthesis of Compositionally Graded Nanocast NiO/NiCo2O4/Co3O4 Mesoporous Composites with Tunable Magnetic Properties. Journal of Materials Chemistry 2010, 20 (33), 7021–7028. |
|
[36] | Zhou, S.; Shi, H.; Feng, X.; Xue, K.; Song, W. Design of Templated Nanoporous Carbon Electrode Materials with Substantial High Specific Surface Area for Simultaneous Determination Ofbiomolecules. Biosensors and Bioelectronics 2013, 42, 163–169. |
|