Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: https://www.sciepub.com/journal/jmpc Editor-in-chief: Prof. Dr. Alireza Heidari, Ph.D., D.Sc.
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2024, 12(1), 17-21
DOI: 10.12691/jmpc-12-1-3
Open AccessArticle

Magnetostatic Modeling and Thermal Losses Estimation in a Nickel-based Curie Wheel

Serge Dzo Mawuefa Afenyiveh1, , Assiongbon Adanlété Adjanoh1, Tchilabalo Pakam1, Yogoubé Goudo1, 2, Mohamadou Tchakpi1, 2, Akiza Bidjagare1, Katchegbélé Yawovi Kable1 and Bila Gnoate Yenteme1, 2

1Laboratoire Materiaux, Energies Renouvelables et Environnement, Physics Department, Université de Kara, Kara, Togo

2Laboratoire de Physique des Matériaux et des Composants à Semi-conducteurs, Physics Department, Université de Lomé, Lomé, Togo

Pub. Date: March 19, 2024

Cite this paper:
Serge Dzo Mawuefa Afenyiveh, Assiongbon Adanlété Adjanoh, Tchilabalo Pakam, Yogoubé Goudo, Mohamadou Tchakpi, Akiza Bidjagare, Katchegbélé Yawovi Kable and Bila Gnoate Yenteme. Magnetostatic Modeling and Thermal Losses Estimation in a Nickel-based Curie Wheel. Journal of Materials Physics and Chemistry. 2024; 12(1):17-21. doi: 10.12691/jmpc-12-1-3

Abstract

This article introduces a method to evaluate the magnetic interaction between permanent magnets and active materials, comprised of nickel pellets, within a Curie wheel. Additionally, an approach to estimate thermal losses is presented to control heat dissipation, thereby mitigating heat accumulation in the active material.

Keywords:
curie wheel magnetic model heat losses

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Karle, A., “The thermomagnetic Curie-motor for the conversion of heat into mechanical energy,” International Journal of Thermal Sciences, 40(9), 2001, 834-842.
 
[2]  Vuarnoz, D., Kitanovski, A., Gonin., C., Borgeaud, Y., Delessert, M., Meinen, M. and Egolf, P.W., “Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat,” Applied Energy, 100, 2012, 229-237.
 
[3]  Christiaanse, T., and B., Ekkes, “Proof-of-concept static thermomagnetic generator experimental device”, Metallurgical and Materials Transactions E, 1, 2014, 36-40.
 
[4]  Trapanese, M., “A dq axis theory of the magnetic, thermal, and mechanical properties of curie motor,” Journal of Applied Physics, 109(7), 2011, 07E706.
 
[5]  Alves, C., Colman,F., Foleiss, G., Szpak, W., Vieira, G., and Bento, A., “Simulation of solar curie wheel using NiFe alloy and Gd, ” International Journal of Refrigeration, 37, 215– 222, 2014.
 
[6]  Afenyiveh, S. D. M., Adanlété Adjanoh, A., Douti, D. L., and Pakam, T., “Thermal simulation and optimization of a Curie-based thermomagnetic motor harnessing concentrated solar energy”. AIP Advances, 14(2), 2024, 025221.
 
[7]  Akoun; G., and Yonnet, J.P., “3d analytical calculation of the forces exerted between two cuboidal magnets,” Magnetics, IEEE Transactions on, 20(10), 1984, 1962–1964.
 
[8]  Nguyen, T and Lu, T. F., “Analytical expression of the magnetic field created by a permanent magnet with diametrical magnetization,” Progress In Electromagnetics Research C, 2018, 87(10).
 
[9]  Bekinal,S., and Jana, S., “Analysis of the magnetic field created by permanent magnet rings in permanent magnet bearings,” International Journal of Applied Electroma gnetics and Mechanics, 46(06), 2014, 255–269.
 
[10]  Fortkamp, F., Lozano, J., and Barbosa, J., “Analytical solutions of the magnetic field generated by two-pole nested Halbach cylinders,” 09 2016.
 
[11]  Agashe, J. S. “A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions”, Journal of Physics D: Applied Physics, 41, 2008, 105001.
 
[12]  Furlani, E. P., “Permanent magnet and electromechanical devices: materials, analysis, and applications”, Academic Press, 2001.
 
[13]  Homadi, A., and Hall, T., “Enhancement the Frequency of a New Oscillating Thermomagnetic Generator”, 2019 IEEE Texas Power and Energy Conference (TPEC).
 
[14]  Forrer, R., Martak, J., “Le champ démagnétisant structural des ferromagnétiques et sa détermination expérimentale”, J. Phys. Radium, 2 (6), 1931, 198-204.
 
[15]  Joseph, R. I., and Schlömann, E., “Demagnetizing Field in Nonellipsoidal Bodies”, Journal of Applied Physics, 36, 1965, 1579.
 
[16]  Zheng, G., Pardavi-Horvath, M., Pardavi-Horvath, X. Huang, Huang, X., Keszei, B., and Vandlik, J., “Experimental determination of an effective demagnetization factor for nonellipsoidal geometries”, Journal of Applied Physics, 79, 1996, 5742-5744.
 
[17]  Aharoni, A., Demagnetizing factors for rectangular ferromagnetic prisms, Journal of Applied Physics, 3, 1998, 3432.
 
[18]  Zhang, J., Li, M., and Morimoto, K., “Sintering of solution-based nano-particles by a UV laser pulse train”, Proceedings of SPIE - The International Society for Optical Engineering, 7920(2), 2011.
 
[19]  Elliott, J. F., “Thermomagnetic Generator”, Journal of Applied Physics, 30, 1959, 1774–1777.
 
[20]  Afenyiveh, S. D. M., Kodjo, K. M., and Hova, H., “Static evaluation of the global solar potential in the region of Kara (Togo) by empirical models,” International Journal of Advanced Research 7, 2019; 830–835.
 
[21]  Afenyiveh, S. D. M., Kodjo, K. M., and Hova, H., “Dynamic evaluation of global solar potential in the region of Kara (Togo) by artificial neural network,” International Journal of Engineering Sciences & Research Technology 8, 2021, 193-202.
 
[22]  Afenyiveh, S. D. M., Adanlété Adjanoh, A., and Douti , D. L., “Optical simulation of a parabolic solar concentrator,” in Conference Proceedings: 1st German-West African Conference on Sustainable, Renewable Energy Systems SusRes: 1st July 2020-Kara, Togo 2020, 66–72.