Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: https://www.sciepub.com/journal/jmpc Editor-in-chief: Prof. Dr. Alireza Heidari, Ph.D., D.Sc.
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2022, 10(1), 10-16
DOI: 10.12691/jmpc-10-1-2
Open AccessArticle

The Elastic Properties of FemnP1−X Ax (A= Si, Se, Sn, In, x = 0.33) Materials: A DFT Study

Anne Mwende Thirika1, , Winfred Mueni Mulwa2, Nicholus Wambua Makau3 and Adentuji Bamidele Ibrahim4

1Egerton University, Nakuru, Kenya,

2Egerton University, Nakuru, Kenya

3University of Eldoret, Eldoret, Kenya

4Bells University of Technology, Ota Ogun State, Nigeria

Pub. Date: January 23, 2022

Cite this paper:
Anne Mwende Thirika, Winfred Mueni Mulwa, Nicholus Wambua Makau and Adentuji Bamidele Ibrahim. The Elastic Properties of FemnP1−X Ax (A= Si, Se, Sn, In, x = 0.33) Materials: A DFT Study. Journal of Materials Physics and Chemistry. 2022; 10(1):10-16. doi: 10.12691/jmpc-10-1-2

Abstract

Hexagonal Fe2P-type magnetocaloric materials have been attracting a lot of research interest lately as a result of their promising application in magnetic refrigeration. These materials work under repeated magnetic and thermal cycles which results to large local strains in the polycrystalline samples and so they need to be mechanically stable across the phase transition. Hence, there is a need to conduct extensive investigations in order to obtain materials which may have better performance in magnetic refrigeration. In this study the elastic properties of FeMnP1−x Ax (A= Si, Se, Sn, In, x = 0.33) were investigated using first principles density functional theory within the generalized gradient approximations as expressed in Quantum Espresso code. The work conclusively shows that FeMnP0.66 In0.33 has the highest Poisson’s ratio, Pugh’s and machinability index hence most ductile of the selected materials. Moreover, it had the highest anisotropic ratio further proving that of the four compounds, it is the most suitable for sustainable operation as a magnetocaloric refrigerant.

Keywords:
machinability ductile phase transition hexagonal mechanical stability elastic

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Carley, S., & Konisky, D. M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5(8), 569-577.
 
[2]  Hillerbrand, R. (2018). Why affordable clean energy is not enough. A capability perspective on the sustainable development goals. Sustainability, 10(7), 2485.
 
[3]  Gjorgievski, V. Z., Markovska, N., Pukšec, T., Duić, N., & Foley, A. (2021). Supporting the 2030 agenda for sustainable development: Special issue dedicated to the conference on sustainable development of energy, water and environment systems 2019. Renewable and Sustainable Energy Reviews, 110920.
 
[4]  Tsvetkov, O. B., Mitripov, V. V., Laptev, Y. A., Baranov, I. V., & Kustikova, M. A. (2021, October). Global allergens and refrigeration alarmism. In IOP Conference Series: Earth and Environmental Science (Vol. 866, No. 1, p. 012021). IOP Publishing.
 
[5]  Elveny, M., Jalil, A. T., Davarpanah, A., Alfakeer, M., Bahajjaj, A. A. A., & Ouladsmane, M. (2021). CFD-based simulation to reduce greenhouse gas emissions from industrial plants. International Journal of Chemical Reactor Engineering, 19(11), 1179-1186.
 
[6]  Bellos, E., & Tzivanidis, C. (2019). Investigation of the environmentally-friendly refrigerant R152a for air conditioning purposes. Applied Sciences, 9(1), 119.
 
[7]  Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843.
 
[8]  Music, D., & Schneider, J. M. (2006). Elastic properties of M Fe 3 N (M= Ni, Pd, Pt) studied by ab initio calculations. Applied Physics Letters, 88(3), 031914.
 
[9]  You, S. K., KlM, C. K., Nahm, K., Ryu, C. M., & Pelzl, J. (1996). Structural Phase Transition of Cubic Ferromagnetic Materials. Journal of the Korean Physical Society, 29(5), 609-613.
 
[10]  Charif Alaoui, Y., Tahiri, N., El Bounagui, O., & Ez-Zahraouy, H. (2021). Magnetic properties and large magnetocaloric effect in the perovskite Mn3GeC compound: Ab initio and Monte Carlo calculations. Phase Transitions, 1-9.
 
[11]  Cherkaev, A. V., & Gibiansky, L. V. (1993). Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite. Journal of the Mechanics and Physics of Solids, 41(5), 937-980.
 
[12]  Chen, X. Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275-1281.
 
[13]  Nye, J. F. (1985). Physical properties of crystals: their representation by tensors and matrices. Oxford university press.
 
[14]  Ramli, M. I., Nuawi, M. Z., Rasani, M. R. M., Ngatiman, N. A., Basar, M. F., & Ghani, A. A. (2020, April). Analysis of Young Modulus and Poisson Ratio Using I-Kaz 4d Analysis Method Through Piezofilm Sensor. In Journal of Physics: Conference Series (Vol. 1529, No. 4, p. 042025). IOP Publishing.
 
[15]  Liu, H., Tang, S., Ma, Y., Liu, W., & Liang, C. (2021). Short-range ordering governs brittleness and ductility in W-Ta solid solution: Insights from Pugh's shear-to-bulk modulus ratio. Scripta Materialia, 204, 114136.
 
[16]  Chen, R., Wang, Q., Yang, Y., Guo, J., Su, Y., Ding, H., & Fu, H. (2018). Brittle–ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys. Intermetallics, 93, 47-54.
 
[17]  Han, M. K., & Miller, G. J. (2008). An Application of the “Coloring Problem”: Structure− Composition− Bonding Relationships in the Magnetocaloric Materials LaFe13-x Si x. Inorganic chemistry, 47(2), 515-528.
 
[18]  Davarpanah, S. M., Ván, P., & Vásárhelyi, B. (2020). Investigation of the relationship between dynamic and static deformation moduli of rocks. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(1), 1-14.
 
[19]  Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892.
 
[20]  Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.
 
[21]  Corso, A. D. (2018). SISSA, the International School for Advanced Studies, SISSA – Trieste, Italy, https://dalcorso.github.io/thermo_pw/.
 
[22]  Ledbetter, H. M. (1977). Elastic properties of zinc: A compilation and a review. Journal of Physical and Chemical Reference Data, 6(4), 1181-1203.
 
[23]  Liu, Z., Li, H., Fan, C., & Luo, W. (2017). Necessary and sufficient elastic stability conditions in 21 quasicrystal Laue classes. European Journal of Mechanics-A/Solids, 65, 30-39.
 
[24]  Sun, Z., Li, S., Ahuja, R., & Schneider, J. M. (2004). Calculated elastic properties of M2AlC (M= Ti, V, Cr, Nb and Ta). Solid state communications, 129(9), 589-592.
 
[25]  Arusei, G. K., Chepkoech, M., Amolo, G. O., & Wambua, N. (2020). The elastic properties and lattice dynamics for selected 211 MAX phases: A DFT study. arXiv preprint arXiv:2011.07102.
 
[26]  Naumov, P., Karothu, D. P., Ahmed, E., Catalano, L., Commins, P., Mahmoud Halabi, J., & Li, L. (2020). The rise of the dynamic crystals. Journal of the American Chemical Society, 142(31), 13256-13272.
 
[27]  Born, M., Huang, K., & Lax, M. (1955). Dynamical theory of crystal lattices. American Journal of Physics, 23(7), 474-474.
 
[28]  Vitos, L., Korzhavyi, P. A., & Johansson, B. (2003). Stainless steel optimization from quantum mechanical calculations. Nature materials, 2(1), 25-28.
 
[29]  Eraslan, D., Balcı, A., Çetin, B., Uçak, N., Çiçek, A., Yılmaz, O. D., & Davut, K. (2021). Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions. Journal of Materials Research and Technology, 11, 1443-1456.
 
[30]  Jiang, D., Wu, M., Liu, D., Li, F., Chai, M., & Liu, S. (2019). Structural stability, electronic structures, mechanical properties and debye temperature of transition metal impurities in Tungsten: A first-principles study. Metals, 9(9), 967.
 
[31]  Ma, S., Wurentuya, B., Wu, X., Jiang, Y., Tegus, O., Guan, P., & Narsu, B. (2017). Ab initio mechanical and thermal properties of FeMnP 1-x Ga x compounds as refrigerant for room-temperature magnetic refrigeration. RSC Advances, 7(44), 27454-27463.