Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: https://www.sciepub.com/journal/jmpc Editor-in-chief: Prof. Dr. Alireza Heidari, Ph.D., D.Sc.
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2020, 8(1), 1-8
DOI: 10.12691/jmpc-8-1-1
Open AccessArticle

Mechanical and Microstructural Properties of Compressed Earth Bricks (CEB) Incorporating Shea Butter Wastes and Stabilized with Cement

Alfred Niamien KOUAMÉ1, , Léon Koffi KONAN1, Bi Irié Hervé GOURE DOUBI2, Monique Tohoue TOGNONVI2 and Samuel OYETOLA1

1Laboratory of Materials Inorganic Chemistry, Felix Houphouet Boigny University, 22 Po box 582 Abidjan, Côte d’Ivoire

2Unit for training and research of Biological Sciences, Peleforo Gon Coulibaly University, Po box 1328 Korhogo, Côte d’Ivoire

Pub. Date: May 14, 2020

Cite this paper:
Alfred Niamien KOUAMÉ, Léon Koffi KONAN, Bi Irié Hervé GOURE DOUBI, Monique Tohoue TOGNONVI and Samuel OYETOLA. Mechanical and Microstructural Properties of Compressed Earth Bricks (CEB) Incorporating Shea Butter Wastes and Stabilized with Cement. Journal of Materials Physics and Chemistry. 2020; 8(1):1-8. doi: 10.12691/jmpc-8-1-1

Abstract

This study is part of the development of eco-building materials based on clay, cement, and agro-industrial wastes. The main objective was to study the mechanical and microstructural properties of compressed earth bricks (CEB) incorporating shea waste and stabilized with cement. To do this, three clayey raw materials denoted F (Fronan), K (Katiola) and Y (Yaou) consisting essentially of kaolinite, quartz, micas and ferric phases and the shea butter waste mainly composed of lignin (32%); cellulose (28%) and hemicellulose (19%) were used. Several samples of bricks with different compositions by mass percentage of clay, shea wastes (0 to 10%) and 5% cement were developed and characterized. The addition of shea butter wastes generates of porosity within of the compressed earth bricks. Results of the mechanical tests showed a possible substitution of 4% of clay F against 6% of clays K and Y by shea wastes. Thus, with these substitution rates, compressive strengths of 2.88 MPa, 3.01 MPa, and 2.49 MPa were obtained for F, K and Y, respectively. Also, the calcium silicates formed due to the addition of 5% of cement, allowed to keep mechanical performances despite the poor adhesion between the organic material and the clay-cement matrix linked to the low crystallinity of the shea wastes. Adding shea wastes to the clay-cement matrix therefore led to a less homogeneous microstructure.

Keywords:
clayey materials Compressed Earth Brick (CEB) shea wastes mechanical properties microstructure

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Minke, G. Building with earth: Design and technology of a sustainable architecture. Walter de Gruyter. 2012.
 
[2]  Alam, I., Naseer, A., & Shah, A. A. Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Construction and Building Materials, 77, 154-159. February 2015.
 
[3]  Aymerich, F., Fenu, L., & Meloni, P. Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material. Construction and Building Materials, 27(1), 66-72. February 2012.
 
[4]  Jayasinghe, C., & Kamaladasa, N. Compressive strength characteristics of cement stabilized rammed earth walls. Construction and Building Materials, 21(11), 1971-1976. November 2007.
 
[5]  Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Construction and building materials, 30, 100-116. May 2012.
 
[6]  Millogo, Y., Morel, J.-C., Aubert, J.-E., & Ghavami, K. (2014). Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Construction and Building Materials, 52, 71-78. February 2014.
 
[7]  Houben, H., & Guillaud, H. Earth construction. A comprehensive guide. Craterre-Eag. 1994.
 
[8]  Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A., & Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy and Buildings, 81, 98-104. October 2014.
 
[9]  Gapuz, E. O., & Ongpeng, J. M. C. Optimizing compressed earth blocks mix design incorporating rice straw and cement using artificial neural network. 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 1-6. 2017.
 
[10]  Van der Vossen, H.A.M and Kamilo, M. Plant Ressources of Tropical Africa 14. Vegetable oils. Fondation PROTA, Wagenngen, Pays-bas / Backhyus Publishers, Leiden, Pays-Bas / CTA, Wageningen, Pays-Bas, GS (Editeurs), (), 261. 2007.
 
[11]  Lecomte-Nana, G., Bonnet, J.-P., & Soro, N. Influence of iron onto the structural reorganization process during the sintering of kaolins. Journal of the European Ceramic Society, 33(4), 661-668. April 2013.
 
[12]  Lacroix, A. Les latérites de la Guinée et les produits d’altération qui leur sont associés. (Vol. 10), Masson et cie. 1914.
 
[13]  Konan, K. L. Interaction entre des matériaux argileux et un milieu basique riche en calcium. Thèse de doctorat, Université de Limoges. Juillet 2006.
 
[14]  Maignien, R. Le cuirassement des sols en Guinée. Afrique Occidentale (Vol. 16). Persée-Portail des revues scientifiques en SHS. 1958.
 
[15]  Guyot, J. Mesure des surfaces spécifiques des argiles par adsorption. Annales agronomiques. 1969.
 
[16]  Segal, L., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), 786-794. 1959.
 
[17]  Segetin, M., Jayaraman, K., & Xu, X. Harakeke reinforcement of soil–cement building materials: Manufacturability and properties. Building and Environment, 42(8), 3066-3079. August 2007.
 
[18]  Weng, C.-H., Lin, D.-F., & Chiang, P.-C. (2003). Utilization of sludge as brick materials. Advances in environmental research, 7(3), 679-685. May 2003.
 
[19]  Laborel-Preneron, A., Aubert, J.-E., Magniont, C., Tribout, C., et Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials, 111, 719-734. 2016. May 2016.
 
[20]  Kouamé, A. N., Gouré Doubi, B. I. H., Konan, K. L., Tognonvi, M., & Oyetola, S. The effect of Shea butter wastes on Physical Properties of Compressed Earth Bricks (CEB) and Cement Stabilized. Australian Journal of Basic and Applied Sciences, 13(2): 19-26. February 2019.
 
[21]  ARS 674. Organisation Régionale Africaine de Normalisation, Ed. Blocs de terre comprimée: norme. Technologie no 11, CDI et CRATerre-EAG, Belgique. 1998.
 
[22]  Goure Doubi, B. I. H. Etude de la consolidation des matériaux" géomimétiques" à base d’argile latéritique: Effet des acides et des phases ferriques. Thèse de doctorat, Université de Limoges. Septembre 2013.
 
[23]  Ghavami, K., Toledo Filho, R. D., & Barbosa, N. P. Behaviour of composite soil reinforced with natural fibres. Cement and Concrete Composites, 21(1), 39-48. 1999.
 
[24]  Millogo, Y. 2008. Etude géotechnique, chimique et minéralogique de matières premières argileuse et latéritique du Burkina Faso améliorées aux liants hydrauliques: application au génie civil (bâtiment et route). Thèse de doctorat, Université de Ouagadougou. Janvier 2008.