[1] | H. Peter de Bocka, P. Chamarthya, J. L. Jacksonb, B. Whalena, Investigation and application of an advanced dual piezoelectric cooling jet to a typical electronics cooling configuration. Thermal and Thermomechanical Phenomena in Electronic Systems, 2012 13th IEEE Intersociety Conference, 1387-1394, San Diego, CA, IEEE. |
|
[2] | S. F. Sufian, M. Z. Abdullah, J. J. Mohamed, Effect of synchronized piezoelectric fans on microelectronic cooling performance. International Communications in Heat and Mass Transfer, 43, 81-89, 2013. |
|
[3] | D. Jang, K. Lee, Flow characteristics of dual piezoelectric cooling jets for cooling applications in ultra-slim electronics. International Journal of Heat Mass Transfer, 79, 201-211, 2014. |
|
[4] | J. Callahan, H. Baruh, Vibration monitoring of cylindrical shells using piezoelectric sensors. Finite Elements in Analysis Design, 23, 303-318, 1996. |
|
[5] | S. Y. Wang, A finite element model for the static and dynamic analysis of a piezoelectric bimorph. International Journal of Solids and Structures, 41, 4075-4096, 2004. |
|
[6] | S. X. Xu, T. S. Koko, Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elements in Analysis Design, 40, 241-262, 2004. |
|
[7] | C. H. Nguyen, S. J. Pietrzko, FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R–L shunt circuit. Finite Elements in Analysis Design, 42, 1231-1239, 2006. |
|
[8] | X. J. Dong, G. Meng, J. C. Peng, Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study. Journal of Sound and Vibration, 297, 680-693, 2006. |
|
[9] | L. Sui, X. Xiong, G. Shi, Piezoelectric actuator design and application on active vibration control. Physics Procedia, 25, 1388-1396, 2012. |
|
[10] | S. B. Choi, H. S. Kim, J. S. Park, Multi-mode vibration reduction of a CD-ROM drive base using a piezoelectric shunt circuit. Journal of Sound and Vibration, 300, 160-175, 2007. |
|
[11] | L. Malgaca, Integration of active vibration control methods with finite element models of smart laminated composite structures. Composite Structures, 92, 1651-1663, 2010. |
|
[12] | Z. Xie, X. Xue, A new plate finite element model for rotating plate structures with constrained damping layer. Finite Elements in Analysis and Design, 47, 487-495, 2011. |
|
[13] | Y. Hong, X. D. He, R. G. Wang, Vibration and damping analysis of a composite blade. Materials & Design, 34, 98-105, 2012. |
|
[14] | S. Kaviani, M. Bahrami, A. M. Esfahani, B. Parsi, A modeling and vibration analysis of a piezoelectric micro-pump diaphragm. Comptes Rendus Mécanique , 342, 692-699, 2014. |
|
[15] | X. Zhong, Q. Wu, X. Li, Influence of enclosure wall vibration on the frequency response of miniature loudspeakers. Applied Acoustics, 93, 9-14, 2015. |
|
[16] | H. Oberst, Uber die Damping der Biegeschwingungen dunner Bleche durch fest haftende Belage. Acta Acustica united with Acustica, 2, 181-194, 1952. |
|
[17] | R. Ross, E. E. Ungar, E. M. Kerwin, Damping of plate flexural vibration by means of viscoelastic laminate. Structural Damping, ASME, New York, 1959. |
|
[18] | E. M. Kerwin, Damping of flexural waves by a constrained viscoelastic layer. Acoustical Society of America, 31, 952-965, 1959. |
|
[19] | R. A. Ditaranto, Theory of vibratory bending for elastic and viscoelastic layer. Applied Mechanics, 32, 881-886, 1965. |
|
[20] | R. A. Ditaranto, J. R. McGraw, Vibratory damping for laminated plates. Engineering for Industry, 91, 1081-1090, 1969. |
|
[21] | M. J. Yan, E. H. Dowell, Governing equations for vibrating constrained layer damping sandwich plates and beams. Applied Mechanics, 39, 1041-1046, 1972. |
|
[22] | Y. P. Lu, G. C. Everstine, More on finite element modeling of damped composite systems. Sound and Vibration, 69, 199-205, 1980. |
|
[23] | C. D. Johnson, D. A. Kienholz, Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal, 20, 1284-1290, 1982. |
|
[24] | E. Barkanov, Transient response analysis of structures made form viscoelastic materials. International journal for numerical methods in engineering, 44, 393-403, 1999. |
|
[25] | V. Balamurugan, S. Narayanan, Finite Element Formulation and Active Vibration Control Study on Beams Using Smart Constrained Layer Damping (SCLD) Treatment. Journal of Sound and Vibration, 249, 227-250, 2002. |
|
[26] | T. X. Liu, H. X. Hua, Z. Zhang, Robust control of plate vibration via active constrained layer damping. Thin-Walled Structures, 42, 427-448, 2004. |
|
[27] | H. Zheng, G. S .H. Pau, Y. Y. Wang, A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Structures, 44, 886-896, 2006. |
|
[28] | G. M. Luo, Y. J. Lee, Simulation of constrained layered damped laminated plates subjected to low-velocity impact using a quasi-static method. Composite Structures, 88, 290-295, 2009. |
|
[29] | G. M. Luo, Y. J. Lee, C. H. Huang, The application and conduct of vibration equations for constrained layered damped plates with impact. J. Steel and Composite Structures, 8, 4, 281-296, 2008. |
|
[30] | D. Granger, A. Ross, Effects of partial constrained viscoelastic layer damping parameters on the initial transient response of impacted cantilever beams: Experimental and numerical results. Journal of Sound and Vibration, 321, 45-64, 2009. |
|
[31] | N. Kumar, S. P. Singh, Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations. Materials & Design, 30, 4162-4174, 2009. |
|
[32] | G. Lepoittevin, G. Kress, Optimization of segmented constrained layer damping with mathematical programming using strain energy analysis and modal data. Materials & Design, 31, 14-24, 2010. |
|
[33] | ISO 2631-1-1997: Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part1 General requirements. |
|