Journal of Geosciences and Geomatics
ISSN (Print): 2373-6690 ISSN (Online): 2373-6704 Website: Editor-in-chief: Maria TSAKIRI
Open Access
Journal Browser
Journal of Geosciences and Geomatics. 2014, 2(4), 151-164
DOI: 10.12691/jgg-2-4-3
Open AccessArticle

Paleoproterozoic Synkinematic Magnesian High-K Magmatism from the Tamkoro-Bossangoa Massif, along the Bossangoa-Bossembele Shear Zone in North-Western Central African Republic

P.E.Y. Danguene1, T. Ngnotue2, S. Ganno3, J. Biandja1, B. Kankeu4 and J.P. Nzenti3,

1University of Bangui, P.O. Box Bangui, Central African Republic

2Department of Geology, Faculty of Science, University of Dschang, P.O.Box: 67 Dschang, W Region, Cameroon

3Laboratory of Petrology and Structural Geology, Faculty of Science, University of Yaoundé I, PO Box 3412 Messa-Yaoundé, Cameroon

4Institute of Mining and Geological Research, Yaoundé, Cameroon

Pub. Date: July 08, 2014

Cite this paper:
P.E.Y. Danguene, T. Ngnotue, S. Ganno, J. Biandja, B. Kankeu and J.P. Nzenti. Paleoproterozoic Synkinematic Magnesian High-K Magmatism from the Tamkoro-Bossangoa Massif, along the Bossangoa-Bossembele Shear Zone in North-Western Central African Republic. Journal of Geosciences and Geomatics. 2014; 2(4):151-164. doi: 10.12691/jgg-2-4-3


The magnesian high-K calc-alkaline intrusive of the Tamkoro-Bossangoa Massif, North Western Central African Republic, were synkinematically emplaced in a sinistral strike-slip shear zone of Paleoproterozoic age. The rock sequences consist of orthogneisses with abundant coarse- to medium-grained quartz monzodiorite, quartz diorite and medium- to fine-grained biotite granite composition and cover a range of about 55 to 76 wt.-% SiO2. They display characteristics of shoshonitic and high-K calc-alkaline series. Quartz monzodiorite and quartz diorite are metaluminous, whereas granite is moderately peraluminous (1≤ A/CNK ≤ 1.1) and plot in the field of I-type granitoids. Major and trace element composition of the granitoids indicate that the source materials were derived from different crustal protoliths. Major and trace element composition are consistent with the magmatism which may have involved remelting of (1) a composite metagreywackes protolith in the upper crust and (2) amphibolitised high-K calc-alkaline basaltic andesites in the central domain of the NEFB (North Equatorial Fold Belt). SHRIMP zircon and titanite dating of granitic rocks gives a magmatic zircon and titanite age of 2069 ± 9.6 Ma and 2063 ± 28 Ma respectively, a metamorphic age of 500 Ma and 597 Ma. The plutonic rocks of Tamkoro-Bossangoa area resemble other Paleoproterozoic high-K calc-alkaline syntectonic plutons in western and central . They also display strong similarities with high-K calc-alkaline plutons of eastern and of the in NE Brazil.

Metaluminous and Peraluminous granitoids Orthogneiss Magnesian series I-type Granite High-K calc-alkaline rocks Crustal source SHRIMP U-Pb dating Central African Republic

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Caby, R., Sial, A.N., Arthaud, M., Vauchez, A. Crustal evolution and the Brasiliano orogeny in northeast . in: Dallmeyer and Lécorché (Eds.): The west African orogens and circum-Atlantic correlatives. Springer-Verlag, 373-397, 1991.
[2]  Brito Neves, B.B., Van Schmus, W.R. and Fetter A. North-western Africa-North eastern Brazil: major tectonic links and correlation problems. Journal of African Earth Sciences, 34, 275-278, 2002.
[3]  Cordani, U.G., D´Agrella-Filho, M.S., Brito-Neves, B.B., Trindale, R.I.F. Tearing up Rodinia: the Neoproterozoic palaeogeography of South American cratonic fragments. Terra Nova, 15, 350-359, 2003.
[4]  Ferré, E., Gleizes, G. and Bouchez, J.L. Internal fabric and strike-slip emplacement of the Pan-African granite of Solli Hills, northeast Nigeria. Tectonics, 14, 1205-1219, 1995.
[5]  Davison, I. and Alvez Dos Santos, R. Tectonic evolution of the Sergipano fold belt, NE Brazil, during the brasiliano orogeny. Precambrian Research, 45, 319-342, 1989.
[6]  Nguiessi, T.C., Nzenti, J.P., Nsifa, E.N., Tempier, P. and Tchoua F.M. Les granitoïdes calco-alcalins, syncisaillement de Bandja dans la chaîne panafricaine nord-équatoriale au Cameroun. Comptes Rendus de l’Académie des Sciences Paris, 325, 95-101, 1997.
[7]  Njome, M.S. and Suh C.E. Tectonic evolution of the Tombel graben basement, southwestern Cameroon. Episodes, 28, 37-41, 2005.
[8]  Nzenti, J.P., Kapajika B., Wörner G. and Lubala R.T. Synkinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. Journal of African Earth Sciences, 45, 74-86, 2006.
[9]  Van Schmus, W.R., Brito Neves, B.B., Hackspacher, P., Babinski, M. U/Pb and Sm/Nd geochronologic studies of the eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South America Earth Science, 8, 267-288, 1995.
[10]  Barbarin, B. A review of the relationships between granitoids types, their origins and their geodynamic environments. Lithos, 46, 605-626, 1999.
[11]  Hutton, D.H.W. Dempster, T.J., Brown, P.E. and Becker, S.D. A new mechanism of granite emplacement: intrusion in active extensional shear zones. Nature, 343, 452-455, 1990.
[12]  Castaing, C., Feybesse, J.L., Thiéblemont, D., Triboulet, C. and Chèvremont, P. Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precambrian Research, 69, 327-344, 1994.
[13]  Neves, S.P., Bruguier, O., Vauchez, A., Bosch, D., Silva, J.M.R. and Mariano, G. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Research, 149: 197-216, 2006.
[14]  Trompette, R. Neoprotozoïc (600 Ma) aggregation of western Gondwana: a tentative Scenario. Precambrian Research, 82, 1-2, 101-112, 1997.
[15]  Abdelsalam J.M., Liegeois J.P. and Stern J.R. The Saharan metacraton. Journal of African Earth Sciences, 34, 119-136, 2002.
[16]  Cornacchia, M., Giorgi, L., Caruba, C. and Vivrier, G. Existence d’une zone de suture sur la marge Nord du craton congolais (secteur de Bangui, centre de centrafricaine.). Comptes Rendus Académie des Sciences de paris, 308 (2), 107-110, 1989.
[17]  Lavreau J. The Archaen and lower Proterozoic of Central Africa. Brasil Geociencas, 12, 187-192, 1982.
[18]  Lavreau, J., Poidevin, J.L., Ledent, D., Liegeois, J.P. and Weis D. Contribution to the geochronology of the basement of Central African Republic. Journal of African Earth Sciences, 11, 69-82, 1990.
[19]  Mapoka, H., Danguéné, Y.P.E., Nzenti, J.P., Biandja, J., Kankeu, B. and Suh Cheo, E. Major Structural Features and the Tectonic Evolution of the Bossangoa-Bossembele Basement, Northwestern Central African Republic. The Open Geology Journal, 4, 100-111, 2010.
[20]  Nzenti, J.P., Barbey, P. and Tchoua, F.M. Evolution crustale au Cameroun : éléments pour un modèle géodynamique de l'orogenèse néoprotérozoïque. In: Vicat, J. P. & Bilong, P. (eds) Géologie et environnements au Cameroun. Collection GEOCAM, 397-407, 1999.
[21]  Pin, C. and Poidevin, J.L. U-Pb Zircon evidence of Pan-African granulites facies metamorphism in Central African Republic. A new interpretation of the high-grade series of the northern border of the Congo craton. Precambrian Research, 36, 302-312, 1987.
[22]  Poidevin J.L. and Pin C. 2Ga U-Pb Zircon dating of Mbi granodiorite (Central African Republic (Equatorial Africa). Precambrian Research, 16, 157-170, 1986.
[23]  Poidevin, J.L., Dostal, J. and Dupuis C. Archean greenstone belt from the Central African Republic (Equatorial Africa). Precambrian Research, 16, 157-170, 1981.
[24]  Rolin, P. Présence d’un chevauchement ductile majeur d’âge panafricain dans la partie centrale de centrafricaine. Résultats préliminaires. Comptes Rendus Académie Sciences Paris, 315, II, 467-470, 1992.
[25]  Poidevin, J.L. Les ceintures de roches vertes de la république centrafricaine (Mbomou, Bandas, Boufoyo, Bogoin). Contribution à la connaissance du Précambrien du Nord du craton du Congo. Thèse Doctorat Etat, Université Blaise Pascal, Clermont-Ferrand II, 440p., 1991
[26]  Cornacchia, M. and Giorgi, L. Discordances majeures et magmatisme des séries précambriennes de la région de Bogoin. (Centre Ouest de centrafricaine). Journal of African Earth Sciences, 9, 2, 221-226, 1989.
[27]  Cornacchia, M. and Dars, R. Un trait structural majeur du continent Africain. Les linéaments centrafricains du Cameroun au Golfe d’Aden. Bulletin Société Géologique de France, XIV, 1, 101-109, 1983.
[28]  Witt-Eickschen, G., Seck, H.A., Mezger, K., Eggins, S.M. and Altheer, R. Lithospheric mantle evolution beneath the Eifel (Germany): constraints from Sr-Nd-Pb isotopes and trace element abundances in spinel peridotite and pyroxenites xenoliths. Journal of Petrology, 44, 1077-1095, 2003.
[29]  Compston, W., Williams, I.S. and Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of geophysical Research, 89, 525-534, 1984.
[30]  Williams, I.S. and Claesson, S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high-grade paragneiss from the Seve Nappes, Scandinavian Caledonides. Contribution to Mineralogy and Petrology, 97, 205-217, 1987.
[31]  Claoue-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M. Two carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren W.A., Kent D., Aubry M.P. & Hardenbol J. (eds). Geochronological time scales and global stratigraphic correlation. Society for Economic Paleontologists and Mineralogists, Special Publication, 54, 3-21, 1995.
[32]  Cumming, G.L. and Richards, J.R. Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155-171, 1975.
[33]  Steiger, R.H. and Jäger, E. Subcommision on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36, 369-362, 1977.
[34]  Debon, F. and LeFort, P. A chemical mineralogical classification of common plutonic rocks and associations. Transaction Royal Society of Edinburgh, 73, 135-149, 1983.
[35]  Frost, B.R., Barnes, C.G., Collins, W.J., Arculus R.J., Ellis D.J. and Frost C.D. A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048, 2001.
[36]  Chappell, B.W. and White, A.J.R. Two contrasting granite types. Pacific Geology, 8, 173-174, 1974.
[37]  Chebeu, C., Nlend, C.D.N., Nzenti, J.P., Ganno, S. Neoproterozoic High-K Calc-Alkaline Granitoids from Bapa-Batié, North Equatorial Fold Belt, Central Cameroon: Petrogenesis and Geodynamic Significance. The Open Geology Journal, 5, 1-20, 2011.
[38]  Kouankap Nono, G.D., Nzenti, J.P., Suh Cheo, E. and Ganno, S. Geochemistry of ferriferous, high-K calc-alkaline magmas from the Banefo-Mvoutsaha Massif (NE Bafoussam), Central Domain of the Pan-African Fold Belt, Cameroon. The Open Geology Journal, 4: 15-28, 2010.
[39]  Mosoh Bambi, C.K., Suh, C.E., Nzenti, J.P. and Frimmel, H.E. U-Mo mineralization potential in Pan-African granites, southwestern Cameroon: Economic geology of the Ekomedion prospect. Journal of African Earth Sciences, 65, 25-45, 2012.
[40]  Nzenti, J.P., Abaga, B., Suh, C.E. and Nzolang, C. Petrogenesis of peraluminous magmas from the Akum-Bamenda Massif, Pan-African Fold Belt, Cameroon. International Geology Review, 1-29, 2010.
[41]  Nzolang C., Kagami, H., Nzenti, J.P. and Holtz F. Geochemistry and preliminary Sr-Nd isotopic data on the Neoproterozoic granitoids from the Bantoum area, west Cameroon: evidence for a derivation from a Paleoproterozoic Archean crust. Polar Geoscience, 16, 196-226, 2003.
[42]  Tagne-Kamga, G. Petrogenesis of the Neoproterozoic Ngondo plutonic complex (Cameroon, west central Africa): a case of late-collisional ferro-potassic magmatism. Journal of African Earth Sciences, 36, 149-171, 2003.
[43]  Ferré, E., Caby, R., Peucat, J.J., Capdevila, R. and Monié, P. Pan-African, post-collisional, ferro-potassic granite and quartz-monzonite plutons of eastern Nigeria. Lithos, 45: 255-279, 1998.
[44]  Ferré, E., Gleizes, G., Caby, R. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114, 199-219, 2002.
[45]  Neves, S.P. and Mariano, G. High-K calc-alkalic plutons in NE Brazil: origin of the biotite diorite/quartz monzonite to granite association and implications for the evolution of the Borborema Province. International Geology Review, 39, 621-638,1997.
[46]  Ayuso, R. and Arth, J.G. 1992. The Northeast Kingdom batholith, Vermon: magmatic evolution and geochemical constraints on the origin of Acadian granitic rocks. Contribution to Mineralogy and Petrology, 111, 1-23.
[47]  Thompson, R.N., Morrison, M.A., Hendry, G.L. and Parry, S.J. An assessment of the relative role of crust and mantle in magma genesis: An elemental approach. Philosophy Transaction of Royal Society, London, A310, 549-590, 1984.
[48]  Pidgeon, R.T. Recrystallization of oscillatory zoned zircon: some geochronological and petrological implications. Contribution of Mineralogy and Petrology, 110, 463-472, 1992.
[49]  Harrison, T.M. and Watson, B. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contribution to Mineralogy and Petrology, 84, 66-72, 1983.
[50]  Watson, E.B. and Harrison, T.M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planetary Science Letters, 64, 295-304, 1983.
[51]  Nzina Nchare, A., Nzenti J.P., Tanko Njiosseu, E.L., Ganno, S. and Ngnotué T. Synkinematic ferro-potassic magmatism from the Mekwene-Njimafofire Foumban Massif, along the Foumban-Banyo shear zone in Central Domain of Cameroon Pan-African Fold Belt. Journal of Geology and Mining Research, 2 (6), 142-158, 2010.
[52]  Chappell, B.W. and White, A.J.R. I-and S-type granites in the Lachlan Fold Belt. Transaction Royal Society of Edinburgh Earth Sciences, 83, 1-12, 1992.
[53]  Black, R. and Liegeois, J.P. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-african testimony. Journal of Geological Society, London, 150, 89-98, 1993.
[54]  Liégeois, J.P., Black, R., Navez, J. and Latouche, L. Early and late Pan-african orogenies in the Aïr assembly of terranes (Tuareg shield, Niger). Precambrian Research, 67 (1-2), 59-88, 1994.
[55]  Williamson, B.J., Downes, H., Thirlwall, M.F., Beard, A. Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos, 40, 295-319, 1997.
[56]  Roberts, M.P., Pin C., Clemens, J.D. and Paquette, J.L. Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut complex, French pyrénées. Journal of Petrology, 41 (6), 808-844, 2000.
[57]  Altherr F.F., Holl A., Hegner E., Langer C. and Kreuzer H. High-potassium, calc-alkaline I-type plutonism in the European variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 51-73, 2000.
[58]  Silva Filho, A.F.D., Guimaraes, I.P., Brito, M.F.L.D. and Pimental M.M. Geochemical signatures of main Neoproterozoic Late-tectonic granitoids from the Proterozoic Sergipano fold belt, Brazil: significance for the Brasiliano orogeny. International Geology Review, 39, 639-659, 1997.
[59]  Neves, S.P. and Mariano, G. The lithospheric mantle as a source of magmas during orogenic processes: insights from high-K diorites in the Borborema Province and implications for continental dynamics. Journal of Virtual Exploration, 17, 1-14, 2004.
[60]  Mariano, G., Correia, P.B., Neves, S.P. and Silva Filho, A.F.D. The high-K calc-alkaline Alagoinhas pluton: anisotropy of magnetic susceptibility, geochemistry, emplacement setting, and implications for the evolution of Borborema Province, NE Brazil. International Geology Review, 51, 502-519, 2009.
[61]  Olarewaju, V.O., Rahaman, M.A. Petrology and geochemistry of older granites from some parts of northern Nigeria. Nigerian Journal of Mining Geology, 18, 16-28, 1982.
[62]  Dada, S.S., Briqueu, L., Harms, U., Lancelot, J.R. and Matheis, G. Charnockitic and monzonitic Pan-African series from north-central Nigeria: trace-element and Nd, Sr, Pb isotope constraints on their petrogenesis. Chemical Geology, 124, 233-252, 1995.
[63]  Winther, K.T. and Newton, R.C. Experimental melting of hydrous low-K tholeiites: evidence of the origin of Archean cratons. Geological Society Denmark Bulletin, 39: 213-228, 1991.
[64]  Roberts, M.P. and Clemens, J.D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21: 825-828, 1993.
[65]  Danguene, P. E. L. (2012). Géologie de la région de Bossamgoa-Bossembélé au Nord-Ouest de la République Centrafricaine (chaîne panafricaine Nord Equatorial): Pétrogenèse, structurogenèse et géochronologie. Unpublished Ph.D Thesis, University of Yaoundé I, 121p, 121p.
[66]  Ganwa, A.A., Siebel, W., Shang. C.K., Seguem, N. and Ekodeck, G.E. New Constraints from Pb-Evaporation Zircon Ages of the Méiganga Amphibole-Biotite Gneiss, Central Cameroon, on Proterozoic Crustal Evolution. International Journal of Geosciences, 2 (2), 138-147, 2011.
[67]  Tanko Njiosseu, E.L., Nzenti, J.P., Njanko, T., Kapajika, B., Nédélec, A. New U-Pb zircon ages from Tonga (Cameroon): coexisting Eburnean-Transamazonian (2.1 Ga) and Pan-African (0.6 Ga) imprints. Comptes Rendus de Géoscience, 337, 551-562, 2005.
[68]  Neves, S.P. Proterozoic history of the Borborema Province (NE Brazil): correlations with neighboring cratons and Pan-African belts, and implications for the evolution of western Gondwana. Tectonics, 22, 1031-1352, 2003.
[69]  Toteu, S.F., Penaye, J. and Djomani, Y.P. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Science, 41, 73-85, 2004.
[70]  Rogers, J.J.W. A history of continents in the past three billion years. Journal of Geology, 104, 91-107, 1996.