Journal of Geosciences and Geomatics
ISSN (Print): 2373-6690 ISSN (Online): 2373-6704 Website: https://www.sciepub.com/journal/jgg Editor-in-chief: Maria TSAKIRI
Open Access
Journal Browser
Go
Journal of Geosciences and Geomatics. 2023, 11(1), 11-20
DOI: 10.12691/jgg-11-1-2
Open AccessArticle

Updated Atmospheric Modelling of Refracted Zenith Angle Using Vertical Temperature Gradient for Refraction Coefficient

Mansoor Sabzali1, and Lloyd Pilgrim1

1Department of Civil, Surveying and Environmental Engineering, University of Newcastle, Callaghan, New South Wales, Australia

Pub. Date: April 07, 2023

Cite this paper:
Mansoor Sabzali and Lloyd Pilgrim. Updated Atmospheric Modelling of Refracted Zenith Angle Using Vertical Temperature Gradient for Refraction Coefficient. Journal of Geosciences and Geomatics. 2023; 11(1):11-20. doi: 10.12691/jgg-11-1-2

Abstract

The atmosphere is an undeniable source of error for geodetic observations which cannot be underestimated or controlled by surveyors in the fieldwork measurements. Technicians using total stations and laser scanners require to have an accurate zenith angle measurement in order to accurately determine the 3D coordinates of points. Therefore, having a thorough knowledge of atmospheric influencing the zenith angle measurements is important. Terrestrial surveying instruments typically use a laser in the domain of visible light or near-infrared in the electromagnetic spectrum. The deviation is introduced by the different intersecting angles between the laser beam and the various atmospheric layers. The phenomenon is called the refractivity of waves. Snell’s law can be used to calculate the deviation of the laser as it moves through different layers of the atmosphere. This study aims to develop an understanding of the refractivity on zenith angle under the local refraction coefficient via considering vertical temperature gradient (VTG) as its major contributing factor into the assumed layers of atmosphere above the Earth’s surface, where the geodetic measurements might take place. The coefficient is also dependent on the other observable atmospheric elements such as temperature, pressure, and humidity. However, the accurate knowledge of VTG is not a straightforward task due to an inability to obtain direct measurements and its unexpected fluctuations. Consequently, the proper modelling of VTG through simulated and real datasets analyses with the aid of mathematical least square approach is pursued to achieve an updated atmospheric model for refracted zenith angle.

Keywords:
electromagnetic spectrum least square local refraction coefficient refracted zenith angles updated atmospheric modelling vertical temperature gradient

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Reuger, J., Electronic Distance Measurements (3rd Edition), Springer-Verlag, 1990.
 
[2]  Bomford, B. G., Geodesy, Oxford, 1962.
 
[3]  Johnston, A., “Lateral Refraction in Tunnels,” Survey Review, pp. 31:242, 201-220, 1991.
 
[4]  Torge, W., Geodesy, Walter de Gruyter, Berlin, New York, 2001.
 
[5]  Nikolitsas, K., and Lambrou, K., “A Methodology for Correcting Refraction in Vertical Angles for Precise Monitoring in Tunnels.,” in In. Proc. of 4th Joint International Symposium on Deformation Monitoring (JISDM). , Athens, Greece, 2019.
 
[6]  C. Hennes. M., Donicke. R., and Christ. H., “Zur Bestimmung der temepraturgradienteninduzierten Richtungsverschwenkni beim Tunnelvortrieb,” p. Vol. VPK. 8/99, 1999.
 
[7]  Brunner, F. K., Geodetic Refraction: Effects of Electromagnetic Wave Propagation Through the Atmosphere., Berlin, Heidelberg, New York, Tokyo: Spriner-Verlag, 1984.
 
[8]  Ingensand. H., and Bockem. B., “Automatic location and pointing Techniques in local positioning systems.,” in 4th Conference of Optical 3D Measurement Techniques, Zurich, 1997.
 
[9]  Brunner. F. K., and fraser. C., “Application of the Atmospheric Turbulent Transfer Model (TTM) for the Reduction of Microwave FDM,” Journal of Geodesy, Photogrammetry and Surveying , 1977.
 
[10]  Dodson, J., “Refraction Effects on Vertical Angle Measurements.,” Survey Review, 1985.
 
[11]  Sabzali, M., “IMPROVEMENT THE MODELLING OF ATMOSPHERIC EFFECTS FOR ELECTRONIC DISTANCE MEASUREMENT (EDM): ANALYSIS OF AIR TEMPERATURE, ATMOSPHERIC PRESSURE ANDRELATIVE HUMIDITY OF AIR,” GEodesy and Cartography, 2022.
 
[12]  “International Association of Geodesy [IAG],” in IAG Resolutions at the XXIIth General Assembly, Birmingham , 1999.
 
[13]  Kharagani, M., “Propagation of Refraction Errors in Trigonometric Height Traversing and Geodetic Levelling,” PhD Thesis at Univerity of New Brunswick, Canada, published, 1987.
 
[14]  Angus-Leppan, A., “Geodetic Refraction,” Geophysics. Encyclopedia of Earth Science. Springer., 1989.
 
[15]  Moreno, B. S., Villamayor, G. A. L., and Talens, G. P., “Practical Formulas for the Refraction Coefficient,” Journal of Surveying Engineering, pp. 140(2): 1-5, 2014.
 
[16]  Friedli. E., Presl. R., and Wieser. A., “Influence of atmospheric refraction on terrestrial laser scanning at long range,” in Proceedings of 4th Joint International Symposium on Deformation Monitoring (JISDM), Athens, Greece, 2019.
 
[17]  Kukkamaki, T. J., “Ober die nivellitische Refraktion,” Publication of the Finnish Geodetic Institute, , Vols. No. 25, Helsinki, Finland, 1938.
 
[18]  Reissmann, G., “Untersuchungen zur Ausschaltung des einflusses der Vertikalrefraktion beim Präzisionsnivellement.,” Wiss. Berichte, Folge V, Vermessung, , Vols. heft 2, Berlin, 1954.
 
[19]  Heer. R., and Niemeier. W., “Theoretical models, practical experiments, and the numerical evaluation of refraction effects in geodetic levelling,” Third International Symposium on the North American Vertical Datum, Natl. Oceanic Atmos. Admin., Silver Spring, Md., pp. 321-342, 1984.
 
[20]  Brocks, J., “Meteorologische Hilfsmittel für die geodätische Höhenmessung,” Z. Vermess.,, pp. 3, 71-76; 4, 110-116, 145-152, 1950.
 
[21]  Hübner, E., “Einfluss der terrestrischen Refraktion auf den Laserstrahl in bodennahen Luftschichten,,” Vermessungstechnik, , vol. 25(10)., p. 349-353., 1977.
 
[22]  Hirt. C., Guillaume. S., Wisbar. A., Burki. B., and Sternberg. H., “Monitoring of the refraction coefficient in the lower atmosphere using a controlled setup of simultaneous reciprocal vertical angle measurements,” Journal of Geophysical Research: Atmospheres, vol. 115, 2010.
 
[23]  Hennes, M., “Das Nivelliersystem-Feldprüfverfahren nach ISO 17123-2 im Kontext refraktiver Störeinflüsse,,” Allg. Vermessung, vol. 3, p. 85-94., 2006.
 
[24]  Ciddor, P. E., “Refractive Index of Air: New Equation for Visible and Near Infrared.,” Applied Optics, pp. 1566-1573, 1996.
 
[25]  Ciddor. P. E., and Hill. R. J., “Refractive index of air. 2. Group Index,” Journal of Applied Optics, pp. 1663-1667, 1999.