[1] | James, H.L., Sedimentary facies of iron-formations, Econ. Geol. 49 (1954), 235-293. |
|
[2] | Clout, J.M.F., Simonson, B.M., Precambrian iron formations and iron-formation hosted iron ore deposits, Economic Geology, 100th anniversary (2005), 643-679. |
|
[3] | Ghosh, R., Baidya, T.K., Mesoarchean BIF and iron ores of the Badampahar greenstone belt. Iron Ore Group, East Indian Shield, Journal of Asian Earth Sciences 150 (2017), 25-44. |
|
[4] | Suh, C.E., Cabral, A., Shemang, E.M., Mbinkar, L. and Mboudou, G. G. M., Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa, Explor. Min. Geol. 17 (2008), 197-207. |
|
[5] | Chombong, N.N., Suh, C.E., 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics, Episodes 36 (2013) 47-57. |
|
[6] | Ndime, E.N., Ganno, S., Soh, Tamehe, L., Nzenti, J.P., Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa, J. Afr. Earth Sci. 148 (2018), 80-98. |
|
[7] | Ndime, E.N., Ganno, S., Nzenti, J.P., Geochemistry and Pb-Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon, International Journal of Earth Sciences 108 (2019), 1551-1570. |
|
[8] | Teutsong, T., Bontognali, T.R.R., Ndjigui, P.D., Vrijmoed, J.C., Teagle, D., Cooper, M. and Vance, D., Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), southern Cameroon: Implications for its origin, Ore Geology Reviews 80 (2017), 267-288. |
|
[9] | Chombong, N.N., Suh, C.E., Lehmann, Vishiti, B., Ilouga, A., Shemang, D.C., Tantoh, E. M., & Kedia A.C., Host rock geochemistry texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon, Applied Earth Science (2017). |
|
[10] | Ganno, S., Njiosseu, T.E.L., Kouankap, N.G.D., Djoukouo, S.A.P., Moudioh, C., Ngnotué, T. and Nzenti. J.P., A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, southwestern Cameroon: Constraints from petrography and geochemistry, Ore Geology Reviews 80 (2017), 860-875. |
|
[11] | Soh, T.L., Tankwa, M.N., Chongtao, W., Ganno, S., Ngnotue, T., Kouankap, N.G.D., Shaamu, J. S., Zhang, J., Nzenti, J.P., Geology and geochemical constrains on the origin and depositional setting of the Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon, Ore Geology Reviews 95 (2018), 620-638. |
|
[12] | Klein, C., Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist 90 (2005), 1473-1499. |
|
[13] | Maurizot, P., Abessolo, A., Feybesse, J.L., and Johan, L.P., Étude de prospection minière du Sud-Ouest Cameroun, Synthèse des travaux de 1978 à 1985, Rapport de BRGM 85 (1986), 274. |
|
[14] | Boillot, G., Huchon, P., Lagabrielle, Y., Boutler, J., Introduction à la géologie, La dynamique de la Terre, Dunod (2008), 74-80. |
|
[15] | Kusky, M.T., Li, X., Wang, Z., Fu, J., Ze, L., Zhu, P., « Are Wilson Cycles preserved in Archean cratons? A comparison of the North China and Slave cratons », Canadian Journal of Earth Sciences 51(3) (2013), 297-311. |
|
[16] | Toteu, S.F., Penaye, J., Poudjom Djomani, Y.H., Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon, Canadian Journal of Earth Sciences 41 (2004), 73-85. |
|
[17] | Shang, C.K., Liégeois, J.P., Satir, M., Frisch, W., Nsifa, E.N., Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo Craton, Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes, Gondwana Research 475 (2010),1-19. |
|
[18] | Van Schmus, W.R., and Toteu, S.F., Were the Congo craton and the Sào Francisco craton joined during the fusion of Gondwanaland? Eostrans AGU, 73(14), Spring Meeting, Supplement 365 (1992). |
|
[19] | Tchameni, R., Mezger, K., Nsifa, N.E., and Pouclet, A., Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon, Lithos, 57 (1) (2001), 23-42. |
|
[20] | Lerouge, C., Cocherie, A., Toteu, S.F., Milesi, J.P., Penaye, J., Tchameni, R., Nsifa, N.E., Fanning, C.M., Shrimp U/Pb zircon age evidence for paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean-transamazonian belt of NE Brazil and central Africa. Journal of African Earth Sciences 44 (2006), 413-427. |
|
[21] | Shang, C.K., Satir, M., Nsifa, E.N., Liégeois, J.P., Siebel, W., Taubald, H., Archaean high-k granitoids produced by remelting of earlier Tonalite-Trondhjemite-Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. International Journal of Earth Sciences 96 (2007), 817-841. |
|
[22] | Li, X-H., Chen, Y., Li, J., Yang, C., Ling, X-X., Tchouankoue, J.P., New isotopic constraints on age and origin of Mesoarchean charnockite, trondhjemite and amphibolite in the Ntem Complex of NW Congo Craton, southern Cameroon. Precambrian Research 276 (2016), 14-23. |
|
[23] | Loose, D., Schenk, V., 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Research 304 (2018), 1-11. |
|
[24] | Bouyo Houketchang M, Penaye J, Mouri H, Toteu S.F., Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: mineralogical evidence and implications for a highpressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton, Journal of African Earth Sciences 149 (2019), 215-234. |
|
[25] | Nga, Essomba, T.P., Ganno, S. Tanko, J.E.L., Ndema, Mbongue, M.J.L., Kamguia, W.B., Takodjou, W.J.D., Nzenti, J.P., Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon, Acta Geochemica (2019). |
|
[26] | Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals, American Mineralogist 95 (2010), 185-187. |
|
[27] | Kato, Y., Kawakami, T., Kano, T., Kunugiza, K. And Swamy, N.S., Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, south India, Journal Asian Earth Sciences 14 (1996), 161-164. |
|
[28] | Ganno, S., Ngnotue, T., Kouankap, N.G.D., Nzenti, J.P., Notsa, F.M., Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, southern Cameroon: Implications for the origin and depositional environment, Chemie der Erde - Geochemistry 75 (2015), 375-387. |
|
[29] | Lepp, H. and Goldich, S.S., Origin of the Precambrian Iron-Formation, Economic Geology 59 (1964), 1025-1060. |
|
[30] | Govett G.J.S., Origin of banded iron-formation; Geological Society of America Bulletin 77 (1966), 1191-1212. |
|
[31] | Bjerrum, C.J., & Canfield, D.E., Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides, Nature, 417 (2002), 159-162. |
|
[32] | Konhauser, K., Hamade, T., Raiswell, R., Morris, R., Ferris, F., Southan, G., Canfield, D., Could bacteria have formed the Precambrian banded iron formation?, Geology 30 (2002), 1079-1082. |
|
[33] | Pecoits, E., Gingras, M.K., Barley, M.E., Kappler A., Posth, N.R., Konhauser, K.O., Petrography and geochemistry of the Dales Gorge banded iron formation: paragenetic sequence, source and implications for palaeo-ocean chemistry, Precambrian Research, 172 (2009), 163-187. |
|
[34] | Egglseder, M.S., Cruden, A.R., Tomkins, A.G., Wilson, S.A., Langendam, A.D. Colloidal origin of microbands in banded iron formations, Geochemical Perspectives Letters, 6 (2018), 43-49. |
|
[35] | Hamade, T., Konhauser, K.O., Raiswell, R., Goldsmith, S., Morris, R.C., Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations, Geology 31 (2003), 35-38. |
|
[36] | Frei, R., Polat, A., Source heterogeneity for the major components of 3.7 Ga banded iron formation (Isua Greenstone Belt, western Greenland): tracing the nature of interacting water masses in BIF formation, Earth and Planetary Sciences Letters 253 (2007), 266-281. |
|
[37] | Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O., Rouxel, O.J., Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes, Economic Geology 105 (2010), 467-508. |
|
[38] | Ganno, S., Tsozué, D., Kouankap, N.G.D., Tchouatcha, M.S., Ngnotué, T., Gamgne Takam, R., Nzenti. J.P., Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi Area. Southern Cameroon, Resource Geology 68(3) (2018), 287-302. |
|
[39] | Soh, Tamehe, L., Wei, C.T., Ganno, S., Simon, S.J., Kouankap, Nono, G.D., Nzenti, J.P., Lemdjou, Y.B., Lin N.H., 2019. Geology of the Gouap iron deposit, Congo craton, southern Cameroon: implications for iron ore exploration, Ore Geology Reviews 107 (2018), 1097-1128. |
|
[40] | Ewers, W.E., Morris R.C. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia, Economic Geology 76 (1981), 1929-1953. |
|
[41] | Klein, C., and Beukes, N.J., Proterozoic iron-formations, In: Condie K.C., (ed) Proterozoic crustal evolution. Elsevier, Amsterdam (1992), 383-418. |
|
[42] | Manikyamba, C., and Naqvi, S.M., Geochemistry of Fe-Mn formations of Archaean Sandurschist belt, India: mixing of clastic and chemical processes at a shallow shelf, Precambrian Research, 72 (1995), 69-95p. |
|
[43] | Böstrom, K., Submarine volcanism as a source for iron, Earth and Planetary Sciences Letters 9 (1970), (4), 348-354. |
|
[44] | Gurvich, E.G., Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation, Springer Berlin (2006), 416p. |
|
[45] | Cox, G.M., Halverson, G.P., Minarik, W.G., Heron, D.P.L., Macdonald, F.A., Bellefroid, E.J., Strauss, J.V., Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance, Chemical Geology 362 (2013), 232-249. |
|
[46] | Wonder, J., Spry, P., Windom, K., Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia, Economic Geology 83 (5) (1988), 1070-1081. |
|
[47] | Bonatti, E., Metallogenesis at oceanic spreading centers, Annual Reviews Earth and Planetary Sciences 3 (1975), 401-433. |
|
[48] | Bostrom, K., The origin and fate of ferromanganoan active ridge sediments, Stockholm Contribution of Geology 27 (1973), 149-243. |
|
[49] | Sugitani, K., Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica, Precambrian Research 57 (1992), 21-47. |
|
[50] | Barrett, T.J., Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the north Appenines, Italy, Chemical Geology 34 (1981), 289-317. |
|
[51] | Freeman, W.H., Physical Description XIV, Illustrated 4th Edition, Published New York. (1986), ISBN 0-7167-1456-6. |
|
[52] | Guilbert, J.M., Charles, F., Park, J., The geology of ore deposits, English, Book, Illustrated edition (1986), https://trove.nla.gov.au/version/22205693. |
|
[53] | Clout, J.M.F., Manuel, J.R., Mineralogical, chemical, and physical characteristics of iron ore, Iron Ore (2015), http://dx.doi.org/10.1016/B978-1-78242-156-6.00002-2. |
|
[54] | Belevtsev, Y.N., Kravchenko. V.M., Kulik, D.A., Belevtsev, Borisenko, R.Y., Drozdovskaya, V.G., Epatko, A.A., Zankevich, Y.M., Kalinichenko, B.A., Koval, O.A., Korzhnev, V.B., Kusheyev, M.N., Lazurenko, V.V., Litvinskaya. M.A., Nikolayenko. V.I., Pirogov. B.I., Prozhogin. L.G., Pikovskiy. V.I., Samsonov, E.S., Skvortsov, V.A., Savchenko, V.V., Stebnovskaya, L.T., Tereshchenko, Y.M., Chaykin, S.I., Yaroshchuk, M.A., Precambrian banded iron formations of the European part of the USSR, Genesis of iron-ores, Naukova Dumka Press, Kiev, Ukrainia (1991), (IGCP UNESCO Project. No 247 (in Russian)). |
|
[55] | Guider, J.W., Iron ore beneficiation -key to modern steelmaking, Mineral Engineering 33 (1981), 410-413. |
|
[56] | Dobbins, M.S. and Burnet, G., Production of an iron ore concentrate from the iron-rich fraction of power plant fly ash, Resource Conservation 9 (1982), 231-242. |
|
[57] | Angerer, T., Hagemann, S.G., Danyushevsky, L.V., Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia, Economic Geology 107 (2012), 599-644. |
|
[58] | Li, Z.Q., Zhang, L.C., Xue, C.J., Zheng, M.T., Zhu, M.T., Robbins, L.J., Konhauser, K. O., Earth’s youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean. Scientific Reports 8(1) (2018). |
|
[59] | Prasad, K.S.S., Sankar D.B., Reddy Y.V., Geochemistry and origin of banded iron-formation from the granulitic terrain of North Arcot District, Tamil Nadu, South India, Chemical Sciences Transaction 1(3) (2012), 482-493. |
|