Journal of Computer Sciences and Applications
ISSN (Print): 2328-7268 ISSN (Online): 2328-725X Website: http://www.sciepub.com/journal/jcsa Editor-in-chief: Minhua Ma, Patricia Goncalves
Open Access
Journal Browser
Go
Journal of Computer Sciences and Applications. 2018, 6(2), 82-90
DOI: 10.12691/jcsa-6-2-5
Open AccessArticle

Improved Early Detection of Gestational Diabetes via Intelligent Classification Models: A Case of the Niger Delta Region in Nigeria

A.A. Ojugo1, and D. Otakore1

1Department of Mathematics/Computer, Federal University of Petroleum Resources Effurun, Nigeria

Pub. Date: September 05, 2018

Cite this paper:
A.A. Ojugo and D. Otakore. Improved Early Detection of Gestational Diabetes via Intelligent Classification Models: A Case of the Niger Delta Region in Nigeria. Journal of Computer Sciences and Applications. 2018; 6(2):82-90. doi: 10.12691/jcsa-6-2-5

Abstract

Diabetes is the most common endocrine-metabolic disorder that features a body characterized by hyperglycaemia – giving rise to risk of microvascular (retinopathy, neupathy and nephropathy) and microvascular (vascular disease, stroke and ischemic heart diseases). Nigeria has become aware of inherent threats of the Type-II diabetes and the consequent metamorphism into gestational diabetes in mothers with or without previous cases of Type-II. We presents a comparative study of classification models using both the supervised and unsupervised evolutionary models. We aim at improved early detection of the disorder via data-mining tools. Adopted dataset is from College of Health and Teaching Hospitals with selected Universities in Niger Delta. Results show that age, body mass index, family ties to second degree, environmental conditions of inhabitance among others are critical factors that increases its likelihood. Gestational diabetes in mothers were confirmed if: (a) history of babies weighing > 4.5kg at birth, (b) insulin resistance with polycystic ovary syndrome, and (c) abnormal tolerance to insulin.

Keywords:
Diabetes microvascular macrovascular fuzzy classifier DiabCare Gestational hyperglycaemia

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Ojugo, A., Eboka, A., Okonta, E., Yoro, R and Aghware, F., (2012). GA rule-based intrusion detection system, Journal of Computing and Information Systems, 3(8), pp 1182-1194.
 
[2]  Goldenberg, R and Punthakee,, Z (2013). Definition, classification and diagnosis, prediabetes and metabolic syndrome, 37(1), S8-S11.
 
[3]  Ojugo, A.A., Allenotor, D and Okobah, I.P., (2016). Intelligent Classification models for Gestational Diabetes: a comparative approach, FUPRE-Lecture Series and Technical Report, Vol. 11, pp 34-45.
 
[4]  Ajufo, B.C., Utomi, L.N., Mekanya, C.O and Ojugo, A.A., (2014). Discovering the rising rate of Diabetes in the Niger Delta region of Nigeria: On the way forward, Technical report in Medicine, Federal Medical Centre, FMCTR-1320, Vol. 46.
 
[5]  Khashei, M., Eftekhari, S and Parvizian, J. (2012). Diagnosing diabetes type-II using a soft intelligent binary classifier model, Review of Bioinformatics and Biometrics, 1(1), pp9-23.
 
[6]  Ojugo, A.A., Allenotor, D., Oyemade, D.A., Longe, O.B and Anujeonye, C.N., (2015b): Comparative stochastic study for credit-card fraud detection models, African Journal of Computing & ICTs. Vol 8, No. 1, Issue 1. Pp 15-24.
 
[7]  Ojugo, A.A, A.O. Eboka., R.E. Yoro., M.O. Yerokun., F.N. Efozia., (2015a). Hybrid model for early diabetes diagnosis, Mathematics and Computers in Science and Industry, Series 50, Pp 176-182.
 
[8]  American Diabetes Association. Standards of Medical Care in Diabetes – 2009. Diabetes Care, 32: S13-61.
 
[9]  Canadian Diabetes Association. Standards of Medical Care in Diabetes – 2014. Journal of Diabetes Care, 32: S13-61.
 
[10]  Perez, M and Marwala, T., (2011). Stochastic optimization approaches for solving Sudoku, IEEE Transaction on Evol. Comp., pp.256-279.
 
[11]  Chinenye, S and Young, E., (2011). State of diabetes care in Nigeria: a review, The Nigerian Health Journal, 11(4), pp101-106.
 
[12]  Adebisi, S.A., Oparinde, D.P., Olarinoye, J.K., Aboyeji, P.A and Ogunro, P.S., (2012).
 
[13]  Arije A, Kuti M, Fasanmade A, Akinlade K, Ashaye A, Obajimi M et al. Control of hypertension in Nigerians with diabetes mellitus; A report of the Ibadan diabetic/kidney disease study group. Int J Diabetes Metabolism. 2007; 15: 82-86.
 
[14]  Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O and Eboka, A., (2013). Hybrid neural network gravitational search algorithm for rainfall runoff modeling, Progress in Intelligence Computing and Application, 2(1), doi: 10.4156/pica.vol2.issue1.2, pp22-33.
 
[15]  Heppner, H and Grenander, U., (1990). Stochastic non-linear model for coordinated bird flocks, In Krasner, S (Ed.), The ubiquity of chaos pp.233-238. Washington: AAAS.
 
[16]  Billings, S. and Lee, K., “Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm”, Neural Networks, Vol. 15, pp. 262-270, 2002.
 
[17]  Ghiassi, M. and Burnley, C., “Measuring effectiveness of a dynamic artificial neural network algorithm for classification problems”, Expert Systems with Applications, Vol. 37, pp. 3118-3128, 2010.
 
[18]  Smith, C.A., (1947). Some examples of discrimination, Annals of Eugenics, Vol. 13, pp. 272-282.
 
[19]  Malhotra, M., Sharma, S. and Nair, S., Decision making using multiple models”, European Journal of Operational Research, Vol. 114, pp. 1-14, 1999.
 
[20]  Marks, S. and Dunn, O., “Discriminant functions when covariance matrices are unequal”, Journal of the American Statistical Association, Vol. 69, pp. 555-559, 1974.
 
[21]  Fix, E. and Hodges, J., “Discriminatory analysis -Nonparametric discrimination: Consistency properties”, Project No. 2-49-004, Report No. 4, Contract No. AF 41(128)-31, USAF School of Aviation, Randolph Field, Texas, 1951.
 
[22]  Chaovalitwongse, W., “On the time series k-nearest neighbor classification of abnormal brain activity”, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 37, 2007.
 
[23]  Viaene, S., Derrig, R., Baesens, B., and Dadene, G., (2002). A comparison of state-of-the art classification techniques for expert automobile insurance claim fraud detection, The Journal of Risk and Insurance, Vol. 69, pp. 373-421.
 
[24]  Yildiz, T., Yildirim, S., Altilar, D., (2008). Spam filtering with parallelized KNN algorithm, Akademik Bilisim
 
[25]  Enas, G. and Choi, S., (1986). Choice of the smoothing parameter and efficiency of k-nearest neighbor, Computers and Mathematics with Applications, Vol. 12, pp. 235-244.
 
[26]  Berrueta, L., Alonso-Salces, R., Heberger, K., “Supervised pattern recognition in food analysis”, Journal of Chromatography A, 1158, pp. 196-214, 2007.
 
[27]  Muezzinoglu, M. and Zurada, J., “RBF-based neurodynamic nearest neighbor classification in real pattern space”, Pattern Recognition, Vol. 39, pp. 747-760, 2006.
 
[28]  Vapnik, V., “Statistical learning theory”, Wiley, New York, 1998.
 
[29]  Song, J. and Tang, H., “Support vector machines for classification of homo-oligomeric proteins by incorporating subsequence distributions”, Journal of Molecular Structure: THEOCHEM 722, pp. 97-101, 2005.
 
[30]  Duda, R., Hart, P., and Stork, D., “Pattern classification”, New York: John Wiley & Sons, Inc.2001.
 
[31]  Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M., and Haussler, D., “Knowledge‐based analysis of microarray gene expression data by using support vector machines” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, pp. 262-267, 2000.
 
[32]  Christianini, N.and Shawe-Taylor, J., “An introduction to support vector machines”, Cambridge University Press, 2000.
 
[33]  Ojugo, A.A., Ben-Iwhiwhu, E., Kekeje, D.O., Yerokun, M.O and Iyawa, I.J.B., (2014). Malware propagation on time varying network, Int. J. Modern Edu. Comp. Sci., 8, pp25-33.
 
[34]  Cukier W., Cody, S and Nesselroth, E. (2006). Genres of spam: Expectations and deceptions, Proc. of the 39th Annual Hawaii International Conference on System Sciences, Vol. 3. www.computer.org/csdl/proceedings/hicss/2006/2507/03/250730051a.pdf.
 
[35]  Longe, O.B., Robert, A.B.C., Chiemeke, S.C and Ojo. F.O., (2008). Feature Outliers And Their Effects On The Efficiencies Of Text Classifiers In The Domain Of Electronic Mail, The Journal of Computer Science and Its Applications, 15(2), pp. 45-56.
 
[36]  Okesola, J.O., Ojo., F.O., Adigun, A.A and Longe, O.B., (2015). Adaptive high probability algorithms for filtering advance fee fraud emails using the concept of data locality, Computing, Information Systems, Development Informatics and Allied Research Journal, Vol. 6, No. 1, pp 7-12.
 
[37]  Antal, P., Fannes, G., Timmerman, D., Moreau, Y., and Moor, B.D., “Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection”, Artificial Intelligence in Medicine Vol. 29, pp. 39-60, 2003.
 
[38]  Oputa, R.N and Nzeribe, E.A., (2013). Gestational diabetes mellitus: a clinical challenge in Africa, African Journal of Diabetes Medicine, Vol. 21, No. 2, pp 29-31.
 
[39]  Barakat, N.H., Bradley, A.P., Barakat, M.N.H., (2010). Intelligible support vector machines for diagnosis of diabetes mellitus, IEEE Transactions on Information Technology in Biomedicine, 14(4), pp1114-1120.
 
[40]  Berardi, V. and Zhang, G. P., “The effect of misclassification costs on neural network classifiers”, Decision Sciences, Vol. 30, pp. 659-68, 1999.
 
[41]  Berks, G., Keyserlingk, D., Jantzeen J., Dotoli, M and Axer H. (2000). Fuzzy clustering: versatile means to explore medical database, ESIT, Aachen, Germany.
 
[42]  Calisir D. and Dogantekin, E., “An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier”, Expert Systems with Applications, Vol. 38, pp. 8311-8315, 2011.
 
[43]  Caudill M., (1987). Neural Networks Primer, AI Expert, pp 46-52.
 
[44]  Chakraborty, R., (2010). Soft computing and fuzzy logic, Lecture notes 1-37, [web]: www.myreaders.info/07_fuzzy_systems.pdf.
 
[45]  Charya, S., Odedra, D., Samanta, S., and Vidyarthi, S., “Computational Intelligence in Early Diabetes Diagnosis: A Review”, The Review of Diabetes Studies, Vol. 7, pp.252-262, 2010.
 
[46]  Coello, C., Pulido, G and Lechuga, M., (2004). Handling multiple objectives with particle swarm optimization, Proc. of Evolutionary Computing, 8, pp 256-279.
 
[47]  Dawson, C and Wilby, R., (2001). Comparison of neural networks in river flow forecasting, J. of Hydrology and Earth Science, SRef-ID: 1607-7938/hess/2001-3-529.
 
[48]  Edo, A.E., Edo, G.O., Ohehen, O.A., Ekhator, N.P and Ordiah, W.C., (2015). Age and diagnosis of type-2 diabetes in Benin City Nigeria, African Journal of Diabetes Medicine, Vol. 23, No. 1, Pp18-19.
 
[49]  Fausett L., (1994). Fundamentals of Neural Networks, New Jersey: Prentice Hall, pp.240.
 
[50]  Fisher, R. A., “The use of multiple measurements in taxonomic problems”, Annals of Eugenics, Vol. 7, pp. 465-475, 1936.
 
[51]  Ganji M. F. and Abadeh, M. S., “A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis”, Expert Systems with Applications, Vol. 38, pp. 14650-14659, 2011.
 
[52]  Giles, D and Draeseke, R., (2001). Economic Model Based on Pattern recognition via fuzzy C-Means clustering algorithm, Economics Dept Working Paper, EWP0101, University of Victoria, Canada.
 
[53]  Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring”, Science, Vol. 286, pp. 531-537, 1999.
 
[54]  Guo, W.W and Xue, H., (2011) An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1), pp109-117.
 
[55]  Inan, G and Elif, D., (2005). Adaptive neuro-fuzzy inference system for classification of EEG using wavelet coefficient, retrieved from http://www.rorylewis.com/PDF/04.
 
[56]  Jang, J.S., (1993). Adaptive fuzzy inference systems, IEEE Transactions on Systems, Man and Cybernetics, vol.23, pp. 665-685.
 
[57]  Kuan, C and White, H., (1994). Artificial neural network: econometric perspective”, Econometric Reviews, Vol.13, Pp. 1-91 and Pp.139-143.
 
[58]  Ludmila I. K. (2008), Fuzzy classifiers Scholarpedia, 3(1), pp 2925.
 
[59]  Mandic, D and Chambers, J., (2001). Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, Wiley & Sons: New York, pp56-90.
 
[60]  Menezes, A.C., Pinheiro, P.R., Pinheiro, M.C.D., Pequeno, T., (2012). Towards the applied hybrid model in decision making: support the early diagnosis of type-2 diabetes, [online] http://www.researchgate.net/publication/262166315.
 
[61]  Minns, A., (1998). Artificial neural networks as sub-symbolic process descriptors, published PhD Thesis, Balkema, Rotterdam, Netherlands.
 
[62]  Nascimento L., (1991). Comparative Genomus of two Leptospira interrogans Serovirs, http://jb.asm.org/cgi/content/full/186/7/2164.
 
[63]  Ojugo, A.A., Allenotor, D., Oyemade, D.A., Yoro, R.E and Anujeonye, C.N., (2015c): Immunization Model for Ebola Virus in Rural Sierra-Leone, African Journal of Computing & ICTs. Vol 8, No. 1, Issue 1. Pp 1-10.
 
[64]  Peter, S., (2014). An analytical study on early diabetes and classification of diabetes mellitus, Bonfring International Journal of Data Mining, Vol. 4, No. 2, Pp 7-11.
 
[65]  Reynolds, R., (1994). Introduction to cultural algorithms, Transaction on Evolutionary Programming (IEEE), pp.131-139.
 
[66]  Ursem, R., Krink, T., Jensen, M.and Michalewicz, Z., (2002). Analysis and modeling of controls in dynamic systems. IEEE Transaction on Memetic Systems and Evolutionary Computing, 6(4), pp.378-389.
 
[67]  Vaarala, O., Knip, M., Paronen, J., Hamalainen, A.M., Muona, P., Vaatainen, M., Ilonen, J., Simell, O and Akerblom, H.K., (1999). Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type-1 diabetes, Diabetes, 8(7), pp1389-1394.
 
[68]  Antal, P., Fannes, G., Timmerman, D., Moreau, Y., and Moor, B.D., “Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection”, Artificial Intelligence in Medicine Vol. 29, pp. 39-60, 2003.
 
[69]  Temurtas, H., Yumusak, N and Temurtas, F., (2009). A comparative study on diabetes disease diagnosis using neural networks, Expert Systems with Applications, Vol. 36, pp. 8610-8615.