Journal of Computer Sciences and Applications
ISSN (Print): 2328-7268 ISSN (Online): 2328-725X Website: https://www.sciepub.com/journal/jcsa Editor-in-chief: Minhua Ma, Patricia Goncalves
Open Access
Journal Browser
Go
Journal of Computer Sciences and Applications. 2013, 1(5), 91-99
DOI: 10.12691/jcsa-1-5-3
Open AccessArticle

Unsupervised Clustering of Images Using Harmony Search Algorithm

Bekoouche Ibtissem1, and Fizazi Hadria1

1Department of Computer Science Laboratory SIMPA,University of Science and Technology of Oran-Mohamed Boudiaf- Faculty of Sciences Oran, Algeria

Pub. Date: June 30, 2013

Cite this paper:
Bekoouche Ibtissem and Fizazi Hadria. Unsupervised Clustering of Images Using Harmony Search Algorithm. Journal of Computer Sciences and Applications. 2013; 1(5):91-99. doi: 10.12691/jcsa-1-5-3

Abstract

Clustering plays an important role in the image processing. It permits to assign a label to each point of the image from a collection of defined classes. Among the domains that use the clustering, we can mention the Remote Sensing for identification of different regions constituting a satellite image. Evaluation of the clustering algorithm results is based on the validity index. In this paper, we applied the Harmony Search algorithm (HS) for make an unsupervised clustering. Thereafter, we evaluated the performance of this tool by analyzing the results obtained. These results show that the validity index determines automatically the appropriate number of classes that represent an image. The study realized with several validity indices allowed us to find the best validity index to evaluate the performance and robustness of the algorithm HS. The experiences obtained with this algorithm show the effectiveness and performance in the stable clustering for given problem.

Keywords:
harmony search processing of image unsupervised clustering validity index

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  M. Ramze Rezaee, B.P.F. Lelieveldt, J.H.C. Reiber: A new cluster validity index for the fuzzy c-mean, Elsevier, Pattern Recognition Letters 19 _1998. 237-246.
 
[2]  O. Pony, X. Descombes et J. Zerubia “ Classification d’images satellitaires hyperspectrales en zone rurale et périurbaine”, INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE, N 4008, Septembre 2000.
 
[3]  Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimization algorithm: harmony search.” Simulation 76 (2) (2001) 60-68.
 
[4]  K.L. Wu, M.S. Yang, “A cluster validity index for fuzzy clustering”, Available online at Science Direct from 19 December 2004, Pattern Recognition Letters 26 (2005) 1275-1291.
 
[5]  M. T. Ayvaz, “Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm” Advances in Water Resources. Vol. 30, no. 11 pp. 2326-2338, 2007.
 
[6]  X.-S. Yang, Music-Inspired Harmony Search Algorithm, SpringerVerlag, 2009, ch. “Harmony Search as a Metaheuristic Algorithm”, pp. 1-14.
 
[7]  A. Belmadani, L. Benasla and M. Rahli, “Etude d’un dispatching economique environnemental par la method Harmony search”, Mediamira Secience Publisher, 2009.
 
[8]  P. Chakraborty, G. Ghosh Roy, S. Das and D. Jain, “An Improved Harmony Search. Algorithm with Differential Mutation Operator”, Fundamenta Informaticae, 2009.
 
[9]  Z. W. Geem, “State-of-the-Art in the Structure of Harmony Search Algorithm”, Environmental Planning and Management Program, pp. 1-11, 2009.
 
[10]  O. M. Alia, R. Mandava and D. Ramachandram, “Harmony Search-based Cluster Initialization for Fuzzy C-Means Segmentation of MR Images”, TENCON 2009.
 
[11]  Hashimoto, W., Nakamura, T., and Miyamoto, S.: Comparison and Evaluation of Different Cluster Validity Measures Including Their Kernelization, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.13 No.3, 2009.
 
[12]  Y. Tak Ma, “A Replication of Harmony Fuzzy Image Segmentation Algorithm” Artificial Neural Networks, 2011.
 
[13]  O. M. Alia and R. Mandava “The variants of the harmony search algorithm: an overview”, ComputerVision Research Group, School of Computer Sciences,University SainsMalaysia, 2011.
 
[14]  I. BEKKOUCHE and H. FIZAZI, “ Conception d’une méthode bio-inspirée ‘Harmony Search ’ pour les traitements des images satellitaires’, the International Conference on New Technologies and Communication, University Hassiba Ben Bouali, Chlef, Algeria, 05 décembre 2012.
 
[15]  I. BEKKOUCHE and H. FIZAZI, “New conception of algorithm ‘Harmony Search’ for the unsupervised clustering of images”, 1st Conference on Theoretical and Applicative Aspects of Computer Science, University 20 August 1955 - Skikda, Algeria, 25 et 26 décembre 2012.
 
[16]  Z. W. Geem and J.Y. Choi, “Music Composition Using Harmony Search Algorithm”,. In: Giacobini M (ed) Applications of evolutionary computing. Springer, Berlin, pp 593-600, 2007.