| [1] | J. Brand-Miller, K. Foster-Powell, S. Colagiuri, and A. Barclay, The New Glucose Revolution for Diabetes: The Definitive Guide to Managing Diabetes and Prediabetes Using the Glycemic Index. Da Capo Press, 2007. |
| |
| [2] | K. Zierler, “Whole body glucose metabolism,” Am. J. Physiol.-Endocrinol. Metab., vol. 276, no. 3 Pt 1, pp. E409-E426, 1999. |
| |
| [3] | J. P. Singh, M. G. Larson, C. J. O’Donnell, P. F. Wilson, H. Tsuji, D. M. Lloyd-Jones, and D. Levy, “Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study).,” Am. J. Cardiol., vol. 86, no. 3, pp. 309-12, Aug. 2000. |
| |
| [4] | R. J. Sigal, S. J. Fisher, J. B. Halter, M. Vranic, and E. B. Marliss, “Glucoregulation during and after Intense Exercise: Effects of β-Adrenergic Blockade in Subjects with Type 1 Diabetes Mellitus,” J. Clin. Endocrinol. Metab., vol. 84, no. 11, pp. 3961-3971, 1999. |
| |
| [5] | E. D. Lehmann and T. Deutsch, “A Physiological Model Of Glucose-insulin Interaction,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991, 1991, vol. 13, no. 5, pp. 2274-2275. |
| |
| [6] | G. Robertson, E. D. Lehmann, W. Sandham, and D. Hamilton, “Blood Glucose Prediction Using Artificial Neural Networks Trained with the AIDA Diabetes Simulator: A Proof-of-Concept Pilot Study,” J. Electr. Comput. Eng., vol. 2011, pp. 1-11, 2011. |
| |
| [7] | R. C. Nordlie, J. D. Foster, and A. J. Lange, “Regulation of glucose production by the liver.,” Annu. Rev. Nutr., vol. 19, pp. 379-406, Jan. 1999. |
| |
| [8] | E. B. Marliss, E. Simantirakis, P. D. Miles, C. Purdon, R. Gougeon, C. J. Field, J. B. Halter, and M. Vranic, “Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects.,” J. Appl. Physiol., vol. 71, no. 3, pp. 924-33, Sep. 1991. |
| |
| [9] | D. M. Nathan, J. B. Buse, M. B. Davidson, E. Ferrannini, R. R. Holman, R. Sherwin, and B. Zinman, “Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes.,” Diabetes Care, vol. 32, no. 1, pp. 193-203, Jan. 2009. |
| |
| [10] | C. Tidy, “Diabetes Education and Self-management Programmes,” 2010. [Online]. Available: http://medical.cdn.patient.co.uk/pdf/1593.pdf. [Accessed: 25-Sep-2013]. |
| |
| [11] | E. D. Lehmann and T. Deutsch, “AIDA: An Automated Insulin Dosage Advisor,” in Proc Annu Symp Comput Appl Med Care, 1992, pp. 818-819. |
| |
| [12] | E. D. Lehmann, T. Deutsch, E. R. Carson, and P. H. Sönksen, “AIDA: an interactive diabetes advisor.,” Comput. Methods Programs Biomed., vol. 41, no. 3-4, pp. 183-203, Jan. 1994. |
| |
| [13] | D. Dazzi, F. Taddei, a Gavarini, E. Uggeri, R. Negro, and a Pezzarossa, “The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method.,” J. Diabetes Complications, vol. 15, no. 2, pp. 80-7, 2001. |
| |
| [14] | J. Tuomilehto, J. Lindstrom, J. G. Eriksson, T. T. Valle, H. Hamalainen, P. Ilanne-Parikka, S. Keinanen-Kiukaanniemi, M. Laakso, A. Louheranta, M. Rastas, V. Salminen, and M. Uusitupa, “Prevention of type 2 Diabetes Mellitus by changes in lifestyle among subjects with impared glucose tolerance,” New English J. Med., vol. 344, no. 18, pp. 1343-1350, 2001. |
| |
| [15] | J. Lindstrom and J. Tuomilehto, “The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk,” Diabetes Care, vol. 26, no. 3, pp. 725-731, 2003. |
| |
| [16] | D. M. Nathan, “Initial Management of Glycemia in Type 2 Diabetes Mellitus,” N. Engl. J. Med., vol. 347, no. 17, pp. 1342-1349, 2002. |
| |
| [17] | E. Årsand, D. H. Frøisland, S. O. Skrøvseth, T. Chomutare, N. Tatara, G. Hartvigsen, and J. T. Tufano, “Mobile health applications to assist patients with diabetes: lessons learned and design implications.,” J. Diabetes Sci. Technol., vol. 6, no. 5, pp. 1197-206, Sep. 2012. |
| |
| [18] | O. El-Gayar, P. Timsina, N. Nawar, and W. Eid, “Mobile Applications for Diabetes Self-Management: Status and Potential,” J. Diabetes Sci. Technol., vol. 7, no. 1, pp. 247-262, Jan. 2013. |
| |
| [19] | A. M. Bell, S. J. Fonda, M. S. Walker, V. Schmidt, and R. a Vigersky, “Mobile phone-based video messages for diabetes self-care support.,” J. Diabetes Sci. Technol., vol. 6, no. 2, pp. 310-9, Mar. 2012. |
| |
| [20] | M. Albisser, “A graphical user interface for diabetes management that integrates glucose prediction and decision support.,” Diabetes Technol. Ther., vol. 7, no. 2, pp. 264-73, Apr. 2005. |
| |
| [21] | O. Ferrer-Roca, K. Franco Burbano, a Cárdenas, P. Pulido, and a Diaz-Cardama, “Web-based diabetes control.,” J. Telemed. Telecare, vol. 10, no. 5, pp. 277-81, Jan. 2004. |
| |
| [22] | J. U. Poulsen, A. Avogaro, F. Chauchard, C. Cobelli, R. Johansson, L. Nita, M. Pogose, L. Del Re, E. Renard, S. Sampath, F. Saudek, M. Skillen, and J. Soendergaard, “A diabetes management system empowering patients to reach optimised glucose control: from monitor to advisor.,” in Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2010, vol. 2010, pp. 5270-1. |
| |
| [23] | E. Otto, C. Semotok, J. Andrysek, and O. Basir, “An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes.,” Diabetes Technol. Ther., vol. 2, no. 4, pp. 569-76, Jan. 2000. |
| |
| [24] | L. R. Keytel, J. H. Goedecke, T. D. Noakes, H. Hiiloskorpi, R. Laukkanen, L. van der Merwe, and E. V Lambert, “Prediction of energy expenditure from heart rate monitoring during submaximal exercise.,” J. Sports Sci., vol. 23, no. 3, pp. 289-97, Mar. 2005. |
| |
| [25] | B. E. Ainsworth, W. L. Haskell, M. C. Whitt, M. L. Irwin, a M. Swartz, S. J. Strath, W. L. O’Brien, D. R. Bassett, K. H. Schmitz, P. O. Emplaincourt, D. R. Jacobs, and a S. Leon, “Compendium of physical activities: an update of activity codes and MET intensities.,” Med. Sci. Sports Exerc., vol. 32, no. 9 Suppl, pp. S498-504, Sep. 2000. |
| |
| [26] | Food and Agriculture Organisation (FAO) of the United Nations, “Human energy requirements: Report of a Joint FAO/WHO/UNU Expert Consultation,” in Food and Nutrition Technical Report Series 1, vol. 0, 2001, p. 38. |
| |
| [27] | D. M. Nathan, J. Kuenen, R. Borg, H. Zheng, D. Schoenfeld, and R. J. Heine, “Translating the A1C assay into estimated average glucose values.,” Diabetes Care, vol. 31, no. 8, pp. 1473-8, Aug. 2008. |
| |
| [28] | D. Muffin, T. Jeor, A. Daugherty, A. Hill, and J. Scott, “A new predictive equation for resting energy expenditure in healthy individuals,” Am. J. Clin. Nutr., vol. 51, no. 2, pp. 241-247, 1990. |
| |
| [29] | Mayo Clinic, “Exercise intensity: Why it matters, how it’s measured,” 2011. [Online]. Available: http://edition.cnn.com/HEALTH/library/exercise-intensity/SM00113.html. [Accessed: 13-Jan-2014]. |
| |
| [30] | L. O. Hall and A. Kandel, “The evolution from expert systems to fuzzy expert systems,” in Fuzzy Expert Systems, A. Kandel, Ed. CRC Press, 1991. |
| |
| [31] | J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man. Cybern., vol. 23, no. 3, pp. 665-685, 1993. |
| |
| [32] | S. R. Ghatage, T. D. Dongale, T. G. Kulkarni, and R. R. Mudholkar, “Development of Fuzzy Inference Scheme for LC Oscillator Design,” Int. J. Eng. Res. Dev., vol. 3, no. 12, pp. 91-98, 2012. |
| |
| [33] | J. Jassbi, S. H. Alavi, P. J. a. Serra, and R. a. Ribeiro, “Transformation of a Mamdani FIS to First Order Sugeno FIS,” 2007 IEEE Int. Fuzzy Syst. Conf., pp. 1-6, Jun. 2007. |
| |
| [34] | Scientific Advisory Committee on Nutrition (SACN), Dietary Reference Values for Energy. 2011. |
| |
| [35] | NHS Information Centre for Health and Social Care, “Health Survey for England 2012,” 2012. |
| |
| [36] | American Diabetes Association, “Nutrition Principles and Recommendations in Diabetes,” Diabetes Care, vol. 27, no. 1, 2004. |
| |
| [37] | D. Frankenfield, L. Roth-Yousey, and C. Compher, “Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review.,” J. Am. Diet. Assoc., vol. 105, no. 5, pp. 775-89, May 2005. |
| |
| [38] | N. Nnamoko, F. Arshad, D. England, and J. Vora, “Fuzzy Expert System for Type 2 Diabetes Mellitus (T2DM) Management using Dual Inference Mechanism,” in AAAI Spring Symposium Series 2013 on Data-driven wellness: From Self tracking to Behaviour modification, 2013. |
| |
| [39] | Abbott UK, “Abbott Diabetes Care.” [Online]. Available: http://www.abbottdiabetescare.co.uk/. [Accessed: 13-Jun-2014]. |
| |
| [40] | P. R. Bevington and K. D. Robinson, Data Reduction and Error Analysis for Physical Sciences, 3rd ed. New York, New York, USA: McGraw-Hill Higher Education, 2003, pp. 98-163. |
| |
| [41] | D. Kanter, “Becoming Databetic: Using data to improve my diabetes control,” 2013. [Online]. Available: http://databetic.com/. [Accessed: 26-Feb-2013]. |
| |