[1] | T. Flick and J. Morehouse, Securing the Smart Grid: Next Generation Power Grid Security: Elsevier Science, 2010. |
|
[2] | J. Gao, Y. Xiao, J. Liu, W. Liang, and C. L. P. Chen, “A survey of communication/networking in Smart Grids,” Future Generation Computer Systems, vol. 28, pp. 391-404, 2012. |
|
[3] | X. Fang, S. Misra, G. Xue, and D. Yang, “Smart Grid - The New and Improved Power Grid: A Survey,” Communications Surveys & Tutorials, IEEE, vol. 14, pp. 944-980, 2012. |
|
[4] | K. Iniewski, Convergence of Mobile and Stationary Next-Generation Networks: Wiley, 2011. |
|
[5] | F. Rahimi and A. Ipakchi, “Overview of Demand Response under the Smart Grid and Market paradigms,” in Innovative Smart Grid Technologies (ISGT), 2010, 2010, pp. 1-7. |
|
[6] | P. K. Steimer, “Enabled by high power electronics-Energy efficiency, renewables and smart grids,” in Power Electronics Conference (IPEC), 2010 International, 2010, pp. 11-15. |
|
[7] | N. E. Bassam, P. Maegaard, and M. L. Schlichting, Distributed Renewable Energies for Off-grid Communities: Strategies and Technologies Toward Achieving Sustainability in Energy Generation and Supply: Elsevier, 2013. |
|
[8] | E. D. Knapp and J. Langill, Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems: Syngress, 2011. |
|
[9] | N. Kayastha, D. Niyato, E. Hossain, and Z. Han, “Smart grid sensor data collection, communication, and networking: a tutorial,” Wireless Communications and Mobile Computing, pp. n/a-n/a, 2012. |
|
[10] | J. Weiss, Protecting Industrial Control Systems from Electronic Threats: Momentum Press, 2010. |
|
[11] | E. D. Knapp and R. Samani, “Chapter 1-What is the Smart Grid?,” in Applied Cyber Security and the Smart Grid, ed Boston: Syngress, 2013, pp. 1-15. |
|
[12] | R. L. Krutz, Securing SCADA Systems. Indianapolis, Indiana: Wiley Publishing, 2006. |
|
[13] | F. Daryabar, A. Dehghantanha, N. I. Udzir, N. F. B. M. Sani, and S. bin Shamsuddin, “Towards secure model for SCADA systems,” in Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012 International Conference on, 2012, pp. 60-64. |
|
[14] | S. Nabil and B. Mohamed, “Security solution for semantic SCADA optimized by ECC mixed coordinates,” in Information Technology and e-Services (ICITeS), 2012 International Conference on, 2012, pp. 1-6. |
|
[15] | J. A. Zubairi and A. Mahboob, Cyber Security Standards, Practices and Industrial Applications: Systems and Methodologies: Igi Global, 2011. |
|
[16] | B. Shahid, Z. Ahmed, A. Faroqi, and R. M. Navid-ur-Rehman, “Implementation of smart system based on smart grid Smart Meter and smart appliances,” in Smart Grids (ICSG), 2012 2nd Iranian Conference on, 2012, pp. 1-4. |
|
[17] | Fadi Aloula, A. R. Al-Alia , Rami Al-Dalkya, M. Al-Mardinia, and a. W. El-Hajjb, “Smart Grid Security: Threats, Vulnerabilities and Solutions “ International Journal of Smart Grid and Clean Energy vol. 1, 2012. |
|
[18] | M. Badra and S. Zeadally, “Key management solutions in the smart grid environment,” in Wireless and Mobile Networking Conference (WMNC), 2013 6th Joint IFIP, 2013, pp. 1-7. |
|
[19] | L. Nian, C. Jinshan, Z. Lin, Z. Jianhua, and H. Yanling, “A Key Management Scheme for Secure Communications of Advanced Metering Infrastructure in Smart Grid,” Industrial Electronics, IEEE Transactions on, vol. 60, pp. 4746-4756, 2013. |
|
[20] | S. S. Iyengar and R. R. Brooks, Distributed Sensor Networks, Second Edition: Sensor Networking and Applications: Taylor & Francis, 2012. |
|
[21] | M. Z. Huq and S. Islam, “Home Area Network technology assessment for demand response in smart grid environment,” in Universities Power Engineering Conference (AUPEC), 2010 20th Australasian, 2010, pp. 1-6. |
|
[22] | E. Hossain, Z. Han, and H. V. Poor, Smart Grid Communications and Networking: Cambridge University Press, 2012. |
|
[23] | L. T. Berger and K. Iniewski, Smart Grid Applications, Communications, and Security: Wiley, 2012. |
|
[24] | F. Bouhafs, M. Mackay, and M. Merabti, “Links to the Future: Communication Requirements and Challenges in the Smart Grid,” Power and Energy Magazine, IEEE, vol. 10, pp. 24-32, 2012. |
|
[25] | N. Saputro, K. Akkaya, and S. Uludag, “A survey of routing protocols for smart grid communications,” Computer Networks, vol. 56, pp. 2742-2771, 2012. |
|
[26] | S. S. S. R. Depuru, L. Wang, and V. Devabhaktuni, “Smart meters for power grid: Challenges, issues, advantages and status,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 2736-2742, 2011. |
|
[27] | J. A. Cardenas, L. Gemoets, J. H. Ablanedo Rosas, and R. Sarfi, “A literature survey on Smart Grid distribution: an analytical approach,” Journal of Cleaner Production. |
|
[28] | W. Wang and Z. Lu, “Cyber security in the Smart Grid: Survey and challenges,” Computer Networks, vol. 57, pp. 1344-1371, 2013. |
|
[29] | S. Massoud Amin, “Smart Grid: Overview, Issues and Opportunities. Advances and Challenges in Sensing, Modeling, Simulation, Optimization and Control,” European Journal of Control, vol. 17, pp. 547-567, 2011. |
|
[30] | L. Luo, N. Tai, and G. Yang, “Wide-area Protection Research in the Smart Grid,” Energy Procedia, vol. 16, Part C, pp. 1601-1606, 2012. |
|
[31] | M. Fadaeenejad, A. M. Saberian, M. Fadaee, M. A. M. Radzi, H. Hizam, and M. Z. A. AbKadir, “The present and future of smart power grid in developing countries,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 828-834, 2014. |
|
[32] | E. Ancillotti, R. Bruno, and M. Conti, “The role of communication systems in smart grids: Architectures, technical solutions and research challenges,” Computer Communications. |
|
[33] | P. Stavroulakis and M. Stamp, Handbook of Information and Communication Security: Springer, 2010. |
|
[34] | Z. Zhang, H. Liu, S. Niu, and J. Mo, “Information security requirements and challenges in smart grid,” in Information Technology and Artificial Intelligence Conference (ITAIC), 2011 6th IEEE Joint International, 2011, pp. 90-92. |
|
[35] | L. Husheng, L. Lifeng, and R. C. Qiu, “A denial-of-service jamming game for remote state monitoring in smart grid,” in Information Sciences and Systems (CISS), 2011 45th Annual Conference on, 2011, pp. 1-6. |
|
[36] | L. Zhuo, W. Wenye, and C. Wang, “Hiding traffic with camouflage: Minimizing message delay in the smart grid under jamming,” in INFOCOM, 2012 Proceedings IEEE, 2012, pp. 3066-3070. |
|
[37] | S. Ruj and A. Nayak, “A Decentralized Security Framework for Data Aggregation and Access Control in Smart Grids,” Smart Grid, IEEE Transactions on, vol. 4, pp. 196-205, 2013. |
|
[38] | M. Jung, T. Hofer, S. Dobelt, G. Kienesberger, F. Judex, and W. Kastner, “Access control for a Smart Grid SOA,” in Internet Technology And Secured Transactions, 2012 International Conferece For, 2012, pp. 281-287. |
|
[39] | M. B. Line, I. A. Tondel, and M. G. Jaatun, “Cyber security challenges in Smart Grids,” in Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International Conference and Exhibition on, 2011, pp. 1-8. |
|
[40] | E. Pallotti and F. Mangiatordi, “Smart grid cyber security requirements,” in Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on, 2011, pp. 1-4. |
|
[41] | W. Stallings, Cryptography and Network Security: Principles and Practice, International Edition: Principles and Practice: Pearson Education Limited, 2014. |
|
[42] | Alfred J. Menezes, P. C. v. Oorschot, and a. S. A. Vanstone, Handbook of Applied Cryptography, 1996. |
|
[43] | H. R. Nemati and L. Yang, Applied Cryptography for Cyber Security and Defense: Information Encryption and Cyphering: Information Science Reference, 2011. |
|
[44] | W. Wang and Z. Lu, “Survey Cyber security in the Smart Grid: Survey and challenges,” Comput. Netw., vol. 57, pp. 1344-1371, 2013. |
|
[45] | J. Kamto, Q. Lijun, J. Fuller, and J. Attia, “Light-weight key distribution and management for Advanced Metering Infrastructure,” in GLOBECOM Workshops (GC Wkshps), 2011 IEEE, 2011, pp. 1216-1220. |
|
[46] | S. Das, Y. Ohba, M. Kanda, D. Famolari, and S. K. Das, “A key management framework for AMI networks in smart grid,” Communications Magazine, IEEE, vol. 50, pp. 30-37, 2012. |
|
[47] | Sungjin Lee, Donghyun Choi, a. Choonsik Park, and S. Kim, “An Efficient Key Management Scheme for Secure SCADA Communication,” World Academy of Science, Engineering and Technology, vol. 45, 2008. |
|
[48] | S. Mittra, “Iolus: a framework for scalable secure multicasting,” presented at the Proceedings of the ACM SIGCOMM '97 conference on Applications, technologies, architectures, and protocols for computer communication, Cannes, France, 1997. |
|
[49] | W. Chung Kei, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,” Networking, IEEE/ACM Transactions on, vol. 8, pp. 16-30, 2000. |
|
[50] | C. Donghyun, L. Sungjin, W. Dongho, and K. Seungjoo, “Efficient Secure Group Communications for SCADA,” Power Delivery, IEEE Transactions on, vol. 25, pp. 714-722, 2010. |
|
[51] | C. Donghyun, K. Hakman, W. Dongho, and K. Seungjoo, “Advanced Key-Management Architecture for Secure SCADA Communications,” Power Delivery, IEEE Transactions on, vol. 24, pp. 1154-1163, 2009. |
|
[52] | C. L. Beaver, D.R. Gallup, W. D. NeuMann, and a. M. D. Torgerson. Key Management for SCADA [Online]. Available: http://energy.sandia.gov/wp/wp-content/gallery/uploads/013252.pdf |
|
[53] | T. Huei-Ru, “A secure and privacy-preserving communication protocol for V2G networks,” in Wireless Communications and Networking Conference (WCNC), 2012 IEEE, 2012, pp. 2706-2711. |
|
[54] | S. Zhu, S. Setia, and S. Jajodia, “LEAP+: Efficient security mechanisms for large-scale distributed sensor networks,” ACM Trans. Sen. Netw., vol. 2, pp. 500-528, 2006. |
|
[55] | W. Chung Kei, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,” Networking, IEEE/ACM Transactions on, vol. 8, pp. 16-30, 2000. |
|
[56] | C. Donghyun, L. Sungjin, W. Dongho, and K. Seungjoo, “Efficient Secure Group Communications for SCADA,” Power Delivery, IEEE Transactions on, vol. 25, pp. 714-722, 2010. |
|
[57] | C. Donghyun, K. Hakman, W. Dongho, and K. Seungjoo, “Advanced Key-Management Architecture for Secure SCADA Communications,” Power Delivery, IEEE Transactions on, vol. 24, pp. 1154-1163, 2009. |
|
[58] | C. L. Beaver, D.R. Gallup, W. D. NeuMann, and a. M. D. Torgerson. Key Management for SCADA [Online]. Available: http://energy.sandia.gov/wp/wp-content/gallery/uploads/013252.pdf |
|
[59] | T. Huei-Ru, “A secure and privacy-preserving communication protocol for V2G networks,” in Wireless Communications and Networking Conference (WCNC), 2012 IEEE, 2012, pp. 2706-2711. |
|
[60] | L. Yee Wei, M. Palaniswami, G. Kounga, and A. Lo, “WAKE: Key management scheme for wide-area measurement systems in smart grid,” Communications Magazine, IEEE, vol. 51, pp. 34-41, 2013. |
|
[61] | S. Zhu, S. Setia, and S. Jajodia, “LEAP+: Efficient security mechanisms for large-scale distributed sensor networks,” ACM Trans. Sen. Netw., vol. 2, pp. 500-528, 2006. |
|
[62] | L. Yue, “Design of a Key Establishment Protocol for Smart Home Energy Management System,” in Computational Intelligence, Communication Systems and Networks (CICSyN), 2013 Fifth International Conference on, 2013, pp. 88-93. |
|
[63] | J.-Y. Kim and H.-K. Choi, “An efficient and versatile key management protocol for secure smart grid communications,” in Wireless Communications and Networking Conference (WCNC), 2012 IEEE, 2012, pp. 1823-1828. |
|
[64] | W. Dapeng and Z. Chi, “Fault-Tolerant and Scalable Key Management for Smart Grid,” Smart Grid, IEEE Transactions on, vol. 2, pp. 375-381, 2011. |
|
[65] | H. Nicanfar, P. Jokar, and V. C. M. Leung, “Smart grid authentication and key management for unicast and multicast communications,” in Innovative Smart Grid Technologies Asia (ISGT), 2011 IEEE PES, 2011, pp. 1-8. |
|
[66] | Gyorgy Dan, King-Shan Lui, Rehana Tabassum, Quanyan Zhu, and Klara Nahrstedt3, “SELINDA: A Secure, Scalable and Light-Weight Data Collection Protocol for Smart Grids,” IEEE Smartgridcomm 2013 Symposium-smart grid cybersecurity and privacy pp. 480-485, 2013. |
|
[67] | Fangming Zhao, Yoshikazu Hanatani, Yuichi Komano, Ben Smyth, Satoshi Ito, Tom Kambayashi, “Secure Authenticated Key Exchange with Revocation for Smart Grid”. IEEE. 2011. |
|
[68] | H. Nicanfar and V. C. M. Leung, “Password-authenticated cluster-based group key agreement for smart grid communication,” security and communication networks vol. 2, pp. 221-233, 2014. |
|
[69] | Kuan Zhang, Rongxing Lu, Xiaohui Liang, Jian Qiao, and Xuemin (Sherman) Shen, “ PARK: A Privacy-preserving Aggregation Scheme with Adaptive Key Management for Smart Grid,” IEEE/CIC international conference on communication in china (ICCC): QRS: QOS, Reliability and security, 2013, pp. 236-241. |
|
[70] | Depeng Li, Zeyar Aung, John R. Williams & Abel Sanchez,” No peeking: privacy-preserving demand response system in smart grids,” International Journal of Parallel, Emergent and Distributed Systems (2013). |
|
[71] | J. Kamto, L. Qian, J. Fuller, J. Attia, “Light-weight key distribution and management for Advanced Metering Infrastructure”, IEEE International Workshop on Smart Grid Communications and Networks, 2011. |
|
[72] | J. Kamto, L. Qian, J. Fuller, J. Attia and Y. Qian, “Key Distribution and Management for Power Aggregation and Accountability in Advance Metering Infrastructure,” IEEE Smartgridcomm 2012 Symposium-cybersecurity and privacy, pp. 360-365. 2012. |
|
[73] | S.H. Seo, X. Ding and E. Bertino, “Encryption Key Management for Secure Communication in Smart Advanced Metering Infrastructures,” IEEE Smartgridcomm 2013 Symposium-cybersecurity and privacy, pp. 498-503. 2013. |
|
[74] | H. Nicanfar, P. Jokar, K. Beznosov, and V. C. M. Leung, “Efficient Authentication and key management mechanisms for smart grid communications”, IEEE systems journal 2013. |
|
[75] | M. Badra and S. Zeadally, “Design and Performance Analysis of a virtual ring architecture for smart grid privacy”, IEEE transactions on information forensics and security, vol. 9, no. 2, 2014. |
|
[76] | M. Nabeel, S. Kerr, X. Ding, E. Bertino, “ Authentication and Key Management for Advanced Metering Infrastructures Utilizing Physically Unclonable Functions”, IEEE Smartgridcomm 2012 Symposium-cybersecurity and privacy. pp. 324-329. |
|
[77] | B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random functions,” in CCS ’02. New York, NY, USA: ACM, 2002, pp. 148-160. |
|
[78] | X. Long, D. Tipper, and Y. Qian, “An Advanced Key Management Scheme for Secure Smart Grid Communications”, IEEE Smartgridcomm 2013 Symposium-cybersecurity and privacy. pp. 504-509. |
|
[79] | P. V. Jasud, M. D. Katkar, S. D. Kamble, “Authentication Mechanism for Smart Grid Network International Journal of Soft Computing and Engineering (IJSCE). |
|
[80] | M. Ibrahim, M. M. Salama, “Smart distribution system volt/VAR control using distributed intelligence and wireless communication” in IET Generation, Transmission & Distribution, 9 (4), 2015, 307-318. |
|
[81] | Bashar Alohali, Madjid Merabti, and Kashif Kifayat “Key Management in Smart Grid: A Survey”, ISBN: 978-1-902560-27-4. |
|