[1] | Demner-Fushman D., Chapman WW., McDonald CJ. What can natural language processing do for clinical decision support? Journal of Biomedical Informatics, Number 42, Vol. 5 (2009). |
|
[2] | National Institute of Health. Breast Cancer Clinical Trials. (2017) |
|
[3] | Clinical Trials Governmental Organization. Protocol Registration Data Element Definitions for Interventional and Observational Studies. http://prsinfo.clinicaltrials.gov/definitions.html, (2017). |
|
[4] | Melnikov M., Vorobkalov P. Metrics in Ontologies in the Medical Domain. (2014). |
|
[5] | Jain J., Kumari A., Somvanshi P., Grover A., Pai S., Sunil S. In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. F1000Research, Number 1, Vol. 1, (2017). |
|
[6] | National Institutes of Health. BioPortal Ontology. https://bioportal.bioontology.org/ontologies, (2011). |
|
[7] | Goodwin TR., Harabagiu SM. Medical Question Answering for Clinical Decision Support. Processing ACM Interantional Conference Information Knowledge Management, Number 1, Vol. 1, Pages = 297- 306, (2016). |
|
[8] | Medbravo Barcelona. MedBravo Programming Interview Task. https://stackoverflow.com/jobs, (2015). |
|
[9] | Ecog-Acrin Organization. ECOG Performance Status Specifications. http://ecog- acrin.org/resources/ecog-performance-status, (2017). |
|
[10] | Zubrod, Charles G. et al. Appraisal of methods for the study of chemotherapy of cancer in man: Comparative therapeutic trial of nitrogen mustard and triethylene thiophosphoramide. Journal of Clinical Epidemiology, Number 1, Vol. 11, Pages = 7-33, (1960). |
|
[11] | Karnofsky D., Burchenal J. Evaluation of chemotherapeutic agents: The clinical evaluation of chemotherapeutic agents in cancer. Evaluation of Chemotherapeutic Agents, Number 1, Vol. 11, Pages = 191-205, (1949). |
|
[12] | National Institute of Health, ClincalTrial.org. Clinical Trials XML Data Finder. https://clinicaltrials.gov, (2018). |
|
[13] | Peus D., Newcomb N., Hofer S. Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation. BMC Medical Informatics and Decision Making, Number 1, Vol. 13, Pages = 1-7, (2013). |
|
[14] | P. M. Rodda Text Mining: Automatic Retrieval, Annotation and Visualisation of Clinical Trials Text using Ontology. Master thesis. University of Manchester (2010). |
|
[15] | Kiritchenko, S., de Bruijn, B., Carini, S., Martin, J., Sim, I. ExaCT: automatic extraction of clinical trial characteristics from journal publications. BMC Medical Informatics and Decision Making, Number 10, Vol. 56, (2010). |
|
[16] | Millian et al. Eligibility Criteria Text Extraction. (2013). |
|
[17] | Cao X., Maloney K., Brusic V. Data mining of cancer vaccine trials, a bird’s eye view. Immunome Research 2008, Number 4, Vol. 7, (2008). |
|
[18] | Reynoso-Aguirre P., Rodriguez-Hontoria H., Belanche Mun˜oz Ll. (2018). Natural Language Processing and Machine Learning Techniques to Solve a Breast Can- cer Clinical Trial ECOG-Classification Problem (Master’s Thesis). Retrieved from https:// upcommons.upc.edu/bitstream/handle/2117/118759/131668.pdf. |
|
[19] | Anderson P., Thor A., Benik J., Raschid L., Vidal. ME. PAnG: finding patterns in annotation graphs. SIGMOD Conference, (2012). |
|
[20] | Cotik V., Rodriguez H., Vivaldi J. Semantic tagging of French medical entities using distant learning. (2015). |
|
[21] | Vivaldi J., Rodrguez H. Using Wikipedia for term extraction in the biomedical domain: first experience. In Procesamiento del Lenguaje Natural 45, Number 1, Vol. 1, Pages = 251-254, (2011). |
|
[22] | OConnor B. R2 is rescaled mean squared error. (2009). |
|
[23] | Hiar J., Ringle C., Sarstedt M. Partial Least Squares Structural Equation Modeling: Rigorous Applica- tions, Better Results and Higher Acceptance. Long Range Planning, Number 1-2, Vol. 46 (2013). |
|
[24] | Ruineihart D., Hint. G., Williams R. Learning Internal Representations by Error Propagation. Parallel Distributed Processing: Explorations in the Micro structure of Cognition, Number 1, Vol. 1, Pages = 1-33, (1985). |
|
[25] | Raschka, S. Python Machine Learning. Packt Publishing, ISBN: 9781783555130, (2015). |
|
[26] | Pedregosa F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, Number 1, Vol. 12, Pages = 2825–2830, (2011). |
|
[27] | Yetisgen M., Gunn M., Xia F., Payne T. A text processing pipeline to extract recommendations from radiology reports. Journal of Biomedical Informatics, Number 2, Vol. 46, Pages = 354-362, (2013). |
|
[28] | Jia Y. Singular Value Decomposition. (2017). |
|
[29] | Wold H. Path models with latent variables: The NIPALS approach. Quantitative sociology: International perspectives on mathematical and statistical modeling, Number 1, Vol. 1, Pages = 307-357, (1975). |
|
[30] | Landauer T., Foltz P., Laham D. An Introduction to Latent Semantic Analysis. (1998). |
|
[31] | Albisua I., Arbelaitz O., Gurrutxaga I., Lasargueren A., Muguerza J., M. Perez J. The quest for the op- timal class distribution: an approach for enhancing the effectiveness of learning via resampling methods for imbalanced data sets 2008, Number 2, Vol. 45, (2013). |
|