[1] | Jayakumar, H., Lee, K., Lee, W. S., Raha, A., Kim, Y., & Raghunathan, V. (2014). Powering the internet of things. In Proceedings of the 2014 international symposium on Low power electronics and design (pp. 375-380). |
|
[2] | R. Dave, “Iot security and authentication schemes based on machine learning,” arXiv preprint arXiv:2109.02695, 2021. |
|
[3] | L. Xiao, X. Wan, X. Lu, Y. Zhang and D. Wu, (2018) “IoT Security Techniques Based on Machine Learning: How Do IoT Devices Use AI to Enhance Security?,” in IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41-49. |
|
[4] | Agustin Parmisano, Sebastian Garcia, Maria Jose Erquiaga. (2020). Stratosphere Laboratory. A labeled dataset with malicious and benign IoT network traffic. January 22th. https://www.stratosphereips.org/datasets-iot24. |
|
[5] | Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., & Bellekens, X. (2020, September). Machine learning based IoT Intrusion Detection System: an MQTT case study (MQTT-IoT-IDS2020 Dataset). In International Networking Conference (pp. 73-84). Springer, Cham. |
|
[6] | Davis, G. (2018). 2020: Life with 50 billion connected devices. 2018 IEEE International Conference on Consumer Electronics (ICCE). |
|
[7] | Gunn, Dylan J. et al. (2019) “Touch-Based Active Cloud Authentication Using Traditional Machine Learning and LSTM on a Distributed Tensorflow Framework.” Int. J. Comput. Intell. Appl. 18 1950022:1-1950022: 16. |
|
[8] | Fang, He, Angie Qi, and Xianbin Wang. (2020). “Fast Authentication and Progressive Authorization in Large-Scale IoT: How to Leverage AI for Security Enhancement.” IEEE Network 34.3 24-29. |
|
[9] | Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight Secure CoAP for the Internet of Things. IEEE Sensors Journal, 13(10), 3711-3720. |
|
[10] | Miorandi D, Sicari S, De Pellegrini F, Chlamtac I. (2012). Internet of things: vision, applications and research challenges. Ad Hoc Netw 10(7): 1497. |
|
[11] | T. Kelley and E. Furey, (2018), “Getting Prepared for the Next Botnet Attack: Detecting Algorithmically Generated Domains in Botnet Command and Control,” 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, pp. 1-6. |
|
[12] | Shelton, J., Rice, C., Singh, J., Jenkins, J., Dave, R., Roy, K., & Chakraborty, S. (2018, August). Palm Print Authentication on a Cloud Platform. In 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD) (pp. 1-6). |
|
[13] | Mason, J., Dave, R., Chatterjee, P., Graham-Allen, I., Esterline, A., & Roy, K. (2020, December). An Investigation of Biometric Authentication in the Healthcare Environment. Array, 8, 100042. |
|
[14] | Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and Other Botnets. Computer, 50(7), 80-84. |
|
[15] | Doshi, R., Apthorpe, N., & Feamster, N. (2018). Machine Learning DDoS Detection for Consumer Internet of Things Devices. IEEE Security and Privacy Workshops (SPW). |
|
[16] | Cenedese, A., Zanella, A., Vangelista, L., & Zorzi, M. (2014). Padova Smart City: An urban Internet of Things experimentation. Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014. |
|
[17] | Alrashdi, Ibrahim, et al. (2019). “Ad-iot: Anomaly detection of iot cyberattacks in smart city using machine learning.” IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). |
|
[18] | Chhabra, Gurpal Singh, Varinder Pal Singh, and Maninder Singh. (2020). “Cyber forensics framework for big data analytics in IoT environment using machine learning.” Multimedia Tools and Applications 79.23 15881-15900. |
|
[19] | Hasan, M., Milon Islam, M., Islam, I., & Hashem, M. M. A. (2019). Attack and Anomaly Detection in IoT Sensors in IoT Sites Using Machine Learning Approaches. Internet of Things, 100059. |
|
[20] | Moh, M., & Raju, R. (2018) Machine Learning Techniques for Security of Internet of Things (IoT) and Fog Computing Systems. 2018 International Conference on High Performance Computing & Simulation (HPCS). |
|
[21] | Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D., & Elovici, Y. (2017). Detection of unauthorized IoT devices using machine learning techniques. arXiv preprint arXiv:1709.04647. |
|
[22] | Thakkar, A., & Lohiya, R. (2020). A Review on Machine Learning and Deep Learning Perspectives of IDS for IoT: Recent Updates, Security Issues, and Challenges. Archives of Computational Methods in Engineering. |
|
[23] | Rasheed Ahmad, Izzat Alsmadi, Machine learning approaches to IoT security: A systematic literature review , Internet of Things, Volume 14, 2021, 100365, ISSN 2542-6605. |
|
[24] | Strecker S., Van Haaften W., Dave R. (2021). An Analysis of IoT Cyber Security Driven by Machine Learning. In: Kumar S., Purohit S.D., Hiranwal S., Prasad M. (eds) Proceedings of International Conference on Communication and Computational Technologies. Algorithms for Intelligent Systems. Springer, Singapore. |
|
[25] | Siddiqui N., Pryor L., Dave R. (2021). User Authentication Schemes Using Machine Learning Methods—A Review. In: Kumar S., Purohit S.D., Hiranwal S., Prasad M. (eds) Proceedings of International Conference on Communication and Computational Technologies. Algorithms for Intelligent Systems. Springer, Singapore. |
|