Journal of Cancer Research and Treatment
ISSN (Print): 2374-1996 ISSN (Online): 2374-2003 Website: https://www.sciepub.com/journal/jcrt Editor-in-chief: Jean Rommelaere
Open Access
Journal Browser
Go
Journal of Cancer Research and Treatment. 2014, 2(1), 19-21
DOI: 10.12691/jcrt-2-1-5
Open AccessCommentary

Decoding the Ice-Water Energy Paradox in the DW-MRI Phantom for Tumors: Targeting Thermodynamics, Kinetic and Structural Molecular Mechanisms Commentary

Heberto Reyes1, 2, Elizabeth Rodríguez-Santana1, Jesús A. Santana-Rodríguez1, Karin E. Santana-Rodríguez1 and Luis Santana-Blank1,

1Fundalas, Foundation for Interdisciplinary Research and Development, Caracas, Venezuela

2Department of Radiology, Clínica Ávila, Caracas, Venezuela

Pub. Date: April 02, 2014

Cite this paper:
Heberto Reyes, Elizabeth Rodríguez-Santana, Jesús A. Santana-Rodríguez, Karin E. Santana-Rodríguez and Luis Santana-Blank. Decoding the Ice-Water Energy Paradox in the DW-MRI Phantom for Tumors: Targeting Thermodynamics, Kinetic and Structural Molecular Mechanisms Commentary. Journal of Cancer Research and Treatment. 2014; 2(1):19-21. doi: 10.12691/jcrt-2-1-5

Abstract

Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) are diagnostic tools widely used to detect solid tumors and monitor therapy response. The ice-water calibration phantom has led to more accurate and reproducible DWI and ADC diagnostics by reducing intra- and inter-vendor dispersion, independent of field intensity (1.5 - 3 Tesla). The ice-water calibration phantom method is based on the idea of thermal equilibrium. The discovery of exclusion zone (EZ) may deeply change such understanding. This paper highlights how thermodynamic, structural and kinetic results of the EZ paradigm may help to explain the ice-water energy paradox and cement our understanding of the ice-water phantom and its application in the diagnosis of solid tumors and other complex diseases.

Keywords:
exclusion zone solid tumors DWI ADC

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Sener, R.N, “Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values”, Comput Med Imaging Graph, 25 (4).299-326. Jul-Aug. 2001.
 
[2]  Woodhams, R., Matsunaga, K., Iwabuchi, K., Kan, S., Hata, H., Kuranami, M., Watanabe, M. and Hayakawa, K, “Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extensión”, J Comput Assist Tomogr, 29 (5). 644-649. Sep-Oct. 2005.
 
[3]  Kallehauge, J.F., Tanderup,K., Haack,S., Nielsen,T., Muren,L.P., Fokdal,L., Lindegaard, J.C. and Pedersen, E. M, “Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: Dependence on b-values used”, Acta Oncologica, 49 (7). 1017-1022. Oct. 2010.
 
[4]  Osama, R.M., Abdelmaksoud, A.H.K., El Tatawy,S.A.M., Nabeel, M.M. and Metwallya, L.I.A, “Role of dynamic contrast-enhanced and diffusion weighted MRI in evaluation of necrosis of hepatocellular carcinoma after chemoembolization”, The Egyptian Journal of Radiology and Nuclear Medicine, 44 (4). 737-746. Dec. 2013.
 
[5]  Chenevert, T.L., Galbán, C.J., Ivancevic, M.K., Rohrer, S.E., Londy, F.J., Kwee, T.C., Meyer, C.R., Johnson, T.D., Rehemtulla, A. and Ross, B.D, “Diffusion coefficient measurement using a temperature-controlled fluid for quality control in multicenter Studies”, J Magn Reson Imaging, 34 (4). 983-987. Oct. 2011.
 
[6]  Malyarenk, D., Galbán, C.J., Londy, F.J., Meyer, C.R., Johnson, T.D., Rehemtulla, A., Ross, B.D. and Chenevert, T.L,” Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom”, J Magn Reson Imaging, 37 (5).1238-1246. May. 2013.
 
[7]  Pollack, G.H, The Fourth Phase of Water: Beyond Solid, Liquid and Vapor, Elner and Sons Publishers, Seattle, 2013, 85-308.
 
[8]  Santana-Blank, L., Rodríguez-Santana, E., Reyes, H., Santana-Rodríguez, J. and Santana-Rodríguez, K, “Laser photobiomodulation: A new promising player for the multi-hallmark treatment of advanced cancer”, Int J Cancer Ther Oncol, 1 (1), Jan-Mar. 2013. [Online]: http://ijcto.org/index.php/IJCTO/article/view/Santana-Blank1/ijcto.0201.2pdf. [Accessed Mar. 6, 2014].
 
[9]  Santana-Blank, L., Rodríguez-Santana, E., Reyes, H., Santana-Rodríguez, J. and Santana-Rodríguez, K, “Water-light interaction: A novel pathway for multi hallmark therapy in cancer”, Int J Cancer Ther Oncol, 2 (1), Sep.-Oct. 2014. [Online]: http://www.ijcto.org/index.php/IJCTO/article/view/Santana-Blank/ijcto.0101.2pdf. [Accessed Mar. 6, 2014].
 
[10]  Santana-Blank, L.A., Reyes, H., Rodríguez-Santana, E. and Santana-Rodríguez, K.E, “Microdensitometry of T2-weighted magnetic resonance (MR) images from patients with advanced neoplasias in a phase I clinical trial of an infrared pulsed laser device (IPLD)”, Lasers Surg Med, 34 (5). 398-406. Jun. 2004.
 
[11]  Santana-Blank, L., Rodríguez-Santana, E. and Santana-Rodríguez, K.E, “Photobiomodulation of aqueous interfaces: finding evidence to support the exclusion zone in experimental and clinical Studies”, Photomed Laser Surg, 31 (9). 461-462. Sep. 2013.
 
[12]  Santana-Blank, L., Rodríguez-Santana, E. and Santana-Rodríguez, K.E, “Photobiomodulation of aqueous interfaces as selective rechargeable bio-batteries in complex diseases: personal view”, Photomed Laser Surg, 30 (5). 242-249. May. 2012.
 
[13]  Rodríguez-Santana, E. and Santana-Blank, L, “Emerging Evidence on the Crystalline Water-Light Interface in Ophthalmology and Therapeutic Implications in Photobiomodulation: First Communication”, Photomed Laser Surg, [Epub ahead of print] Feb. 2014. [Online]: http://www.ncbi.nlm.nih.gov/pubmed/24571354 [Accessed Mar. 6, 2014].
 
[14]  Galbán, S., Lemasson, B.,Williams, T.M., Li,F., Heist,K.A., Johnson, T.D., Leopold, J.S., Chenevert, T.L., Lawrence, T.S., Rehemtulla, A., Mikkelsen, T., Holland, E.C., Galbán, C.J. and Ross, B.D, “DW-MRI as a Biomarker to Compare Therapeutic Outcomes in Radiotherapy Regimens Incorporating Temozolomide or Gemcitabine in Glioblastoma”, Plos One, Apr. 2012. [Online]: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035857#pone-0035857-g006 [Accessed Mar. 6, 2014].
 
[15]  Beddy, P., O'Neill, A.C., Yamamoto, A.K., Addley, H.C., Reinhold, C. and Sala, E, “FIGO staging system for endometrial cancer: added benefits of MR imaging”, Radiographics, 32 (1). 241-254. Jan-Feb. 2012.
 
[16]  Freeman, S.J., Aly, A.M., Kataoka, M.Y., Addley, H.C., Reinhold, C. and Sala, E, “The revised FIGO staging system for uterine malignancies: implications for MR Imaging”, Radiographics, 32 (6). 1805-1827. Oct. 2012.
 
[17]  Ciliberto, M., Maggi1, F., Treglia, G., Padovano, F., Calandriello, L., Giordano, A. and Bonomo, L, “Comparison between whole-body MRI and Fluorine-18-Fluorodeoxyglucose PET or PET/CT in oncology: a systematic review”, Radiol Oncol, 47 (3). 206-218. Sept. 2013.