Journal of Aquatic Science
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: https://www.sciepub.com/journal/jas Editor-in-chief: Hanaa Abd El Baky
Open Access
Journal Browser
Go
Journal of Aquatic Science. 2024, 7(1), 1-8
DOI: 10.12691/jas-7-1-1
Open AccessArticle

Pathology of Oreochromis Niloticus Due to Infections and Water Pollution in Kisumu and Homa Bay, Lake Victoria, Kenya

Kamundia Patrick Waweru1, , Mbuthia Paul Gichohi2, Bebora Lilly2, Njagi Lucy Wanjiru2 and Nyaga Phillip Njeru1

1Maasai Mara University, Department of Animal Health and Production, PO. Box 861- 20500, Narok, Kenya

2University of Nairobi, Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, PO. Box 29053 – 00625, Nairobi, Kenya

Pub. Date: January 22, 2024

Cite this paper:
Kamundia Patrick Waweru, Mbuthia Paul Gichohi, Bebora Lilly, Njagi Lucy Wanjiru and Nyaga Phillip Njeru. Pathology of Oreochromis Niloticus Due to Infections and Water Pollution in Kisumu and Homa Bay, Lake Victoria, Kenya. Journal of Aquatic Science. 2024; 7(1):1-8. doi: 10.12691/jas-7-1-1

Abstract

The study assessed the health of Nile tilapia (Oreochromis niloticus) in the Winam Gulf in Kisumu and Homa Bay, Kenya, using descriptive lesions and histopathological semi-quantitative tools. The condition factor and hepatosomatic index were calculated based on the total fish weight, standard length, and liver weight. The liver, gills, and kidneys were collected from freshly killed fish, fixed in 10% buffered formalin, and processed using standard histopathological techniques. The overall condition factor of fish was 1.12 in Kisumu while those in Homa Bay ranged between 1.23 to 1.32 and the differences was statistically significant (p<0.05). The mean organ indices were higher in Kisumu (liver: 4.27, gill: 3.64 and kidney: 4.47) compared to Homa Bay’s (liver: 2.26, gill: 3.21 and kidney: 1.98). The most prevalent histopathological lesions in the liver were increased melanomacrophages centres aggregation (12.5%), hepatocellular fibrosis (9.7%), fatty liver degeneration (10.4%) and hepatocytic necrosis (9%). Those in gills, were leucocytic infiltration (12.5%), gill epithelial necrosis (11.8%), telangiectasia (11.1%), and gill lamellar fusion (11.1%). In the kidney the lesions were glomerular vacuolation and dilatation of the Bowman’s capsule (12.5%), and vacuolation and hydropic degeneration of renal tubular epithelium (11.8%). The study provides insight into the health status of fish in Kisumu and Homa Bay and demonstrates the histopathological changes and semi-quantitative scores of lesions in tissues caused by exposure to pollutants, infections by pathogenic microorganisms, and other factors that compromise the health of the fish. The findings indicate a need for monitoring the wild fish health and water pollution levels for socio-economic development and overall ecosystem protection in the region.

Keywords:
Nile tilapia pathological changes histopathology Kisumu Homa Bay

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Sayer, C. Máiz-Tomé, L. & Darwall, W. “Freshwater biodiversity in the Lake Victoria Basin: Guidance for species conservation, site protection, climate resilience and sustainable livelihoods.” Cambridge, Gland: International Union for Conservation of Nature. 50-52. 2018. 10.2305/IUCN.CH.2018.RA.2.en.
 
[2]  Yongo, E., Outa, N., Kito, K., & Matsushita, Y. “Studies on the biology of Nile tilapia (Oreochromis niloticus) in Lake Victoria, Kenya: in light of intense fishing pressure.” African Journal of Aquatic Science, 43(2), 195–198.
 
[3]  Yongo, E., Outa, N., Kito, K., & Matsushita, Y. “Some aspects of the biology of Nile perch, Lates niloticus, in the open waters of Lake Victoria, Kenya.” Lakes and Reservoirs: Research and Management, 22(3), 262–266.
 
[4]  Kamundia W, Mbuthia P., Njagi L., Bebora L., Nyaga P. & Mdegela R. Quantification of Estrogenic endocrine disrupting chemicals in river estuary and lake water from select sites in Winam Gulf of Lake Victoria, Kenya. European Journal of Pharmaceutical and Medical Research. 10 (9),81-87. 2023.
 
[5]  Abong’o, D. A., Wandiga, S. O., & Jumba, I. O. “Occurrence and distribution of organochlorine pesticide residue levels in the water, sediment and aquatic weeds in the Nyando River catchment, Lake Victoria, Kenya.” African Journal of Aquatic Science, 43(3), 255–270. 2018.
 
[6]  Onjong, H. A., Ngayo, M. O., Mwaniki, M., Wambui, J., & Njage, P. M. K "Microbiological Safety of Fresh Tilapia (Oreochromis niloticus) from Kenyan Fresh Water Fish Value Chains.” Journal of Food Protection,81 (12). 1973-1981.
 
[7]  Karlsson, O. M., Waldetoft, H., Hållén, J., Malmaeus, J. M., & Strömberg, L. “Using Fish as a Sentinel in Risk Management of Contaminated Sediments.” Archives of Environmental Contamination and Toxicology, 84(1), 45-72. 2023.
 
[8]  Flores-Lopes, F., & Thomaz, A. T. “Histopathologic alterations observed in fish gills as a tool in environmental monitoring.” Brazilian Journal of Biology, 71, 179-188.
 
[9]  Kundu, R., Aura, C. M., Nyamweya, C., Agembe, S., Sitoki, L., Lung’ayia, H. B. O., Ongore, C., Ogari, Z., & Werimo, K. “Changes in pollution indicators in Lake Victoria, Kenya and their implications for lake and catchment management.” Lakes and Reservoirs: Research and Management, 22(3), 199–214.
 
[10]  Liebel, S., Tomotake, M., & Oliveira-Ribeiro, C. A. “Fish histopathology as a biomarker to evaluate water quality.” Ecotoxicology and Environmental Contamination, 8(2), 9–15.
 
[11]  Wolf, J. C., Baumgartner, W. A., Blazer, V. S., Camus, A. C., Engelhardt, J. A., Fournie, J. W., Frasca, S., Groman, D. B., Kent, M. L., Khoo, L. H., Law, J. M., Lombardini, E. D., Ruehl-Fehlert, C., Segner, H. E., Smith, S. A., Spitsbergen, J. M., Weber, K., & Wolfe, M. J. “Nonlesions, Misdiagnoses, Missed Diagnoses, and Other Interpretive Challenges in Fish Histopathology Studies.” Toxicologic Pathology, 43(3), 297–325.
 
[12]  Aldoghachi, M. A., Azirun, M. S., Yusoff, I., & Ashraf, M. A. “Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by waterborne lead exposure.” Saudi Journal of Biological Sciences, 23(5), 634–641.
 
[13]  Heier, L. S., Lien, I. B., Strømseng, A. E., Ljønes, M., Rosseland, B. O., Tollefsen, K. E., & Salbu, B. “Speciation of lead, copper, zinc and antimony in water draining a shooting range-Time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.).” Science of the Total Environment, 407(13), 4047–4055.
 
[14]  Majnoni, F., Mansouri, B., Rezaei, M., & Hamidian, A. H. “Metal concentrations in tissues of common carp, Cyprinus carpio, and silver carp, Hypophthalmichthys molitrix from the Zarivar Wetland in Western Iran.” Archives of Polish Fisheries, 21(1), 11–18.
 
[15]  Pokorska, K., Protasowicki, M., Bernat, K., & Kucharczyk, M. “Content of metals in flounder, Platichthys flesus L., and Baltic herring, Clupea harengus membras L., from the southern Baltic Sea.” Archives of Polish Fisheries, 20(1), 51–53.
 
[16]  Yancheva, V., Velcheva, I., Stoyanova, S., & Georgieva, E. “Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review.” In Applied Ecology and Environmental Research (Vol. 14, Issue 1).
 
[17]  Vergilio, C. S., Moreira, R. V, Carvalho, C. E. V., & Melo, E. J. T. “Histopathological effects of Mercury on male gonad and sperm of tropical fish Gymnotus carapo in vitro.” E3S Web of Conferences, 1, 3–6.
 
[18]  Camargo, M. M. P., & Martinez, C. B. R. “Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream.” Neotropical Ichthyology, 5(3), 327–336.
 
[19]  Hammock, B. G., Hobbs, J. A., Slater, S. B., Acuña, S., & Teh, S. J. “Contaminant and food limitation stress in an endangered estuarine fish.” Science of the Total Environment, 532, 316–326.
 
[20]  Akoll, P., & Mwanja, W. “Fish health status, research and management in East Africa: Past and present.” African Journal of Aquatic Science, 37(2), 117–129.
 
[21]  Migiro, K. E., Ogello, E. O., & Munguti, J. M. “The length-weight relationship and condition factor of Nile tilapia (Oreochromis niloticus L.) broodstock at Kegati Aquaculture Research Station, Kisii, Kenya.” International Journal of Advanced Research, 2(5), 777-782. 2014.
 
[22]  Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., & Wahli, T. “Histopathology in fish: Proposal for a protocol to assess aquatic pollution.” Journal of Fish Diseases, 22(1), 25–34.
 
[23]  Datta, S. N., Kaur, V. I., Dhawan, A., & Jassal, G. “Estimation of length-weight relationship and condition factor of spotted snakehead Channa punctata (Bloch) under different feeding regimes.” SpringerPlus, 2(1), 1–5.
 
[24]  Araújo, F. G., Morado, C. N., Parente, T. T. E., Paumgartten, F. J. R., & Gomes, I. D. “Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803) in a tropical reservoir in Southeastern Brazil.” Brazilian Journal of Biology, 78(2), 351–359.
 
[25]  Al-Ghais, S. M. “Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish.” Marine Pollution Bulletin, 74(1), 183–186.
 
[26]  Çiftçi, N., Ay, Ö., Karayakar, F., Cicik, B., & Erdem, C. “Effects of zinc and cadmium on condition factor, hepatosomatic and gonadosomatic index of Oreochromis niloticus.” Fresenius Environmental Bulletin, 24(11A), 3871–3874. 2015.
 
[27]  Alazemi, B. M., Lewis, J. W., & Andrews, E. B. “Gill Damage in the Freshwater Fish Gnathonemus Petersii (Family_ Mormyridae) Exposed to Selected Pollutants_ An Ultrastructural Study.” Environmental Technology, 17 (3) , 225–238. 1996.
 
[28]  Lewis, J. W., Morley, N. J., Drinkall, J., Jamieson, B. J., Wright, R., & Parry, J. D. “Toxic effects of Streptomyces griseus spores and exudate on gill pathology of freshwater fish.” Ecotoxicology and Environmental Safety, 72(1), 173–181.
 
[29]  Georgieva, E., Stoyanova, S., Velcheva, I., Vasileva, T., Bivolarski, V., Iliev, I., & Yancheva, V. “Metal effects on histological and biochemical parameters of common rudd (Scardinius erythrophthalmus L.).” Archives of Polish Fisheries, 22(3), 197–206.
 
[30]  Hassaninezhad, L., Safahieh, A. R., Salamat, N., Savari, A., & Majd, N. E. “Assessment of gill pathological responses in the tropical fish yellowfin seabream of the Persian Gulf under mercury exposure."Toxicology Reports, 1, 621–628.
 
[31]  Salamat, N., & Zarie, M. “Using of Fish Pathological Alterations to Assess Aquatic Pollution: A Review.” World Journal of Fish and Marine Sciences, 4(3), 223–231.
 
[32]  Bruno, D. W. “Systemic pathology of fish.” In Fisheries Research (Vol. 9, Issue 2).
 
[33]  Butchiram, M. S., Vijaya Kumar, M., & Tilak, K. S. “Studies on the histopathological changes in selected tissues of fish Labeo rohita exposed to phenol.” Journal of Environmental Biology, 34(2), 247–251. 2013.
 
[34]  Roberts, R. J. Fish Pathology. Wiley. 2012. 67-70.
 
[35]  Sales, C. F., Silva, R. F., Amaral, M. G. C., Domingos, F. F. T., Ribeiro, R. I. M. A., Thomé, R. G., Santos, H. B., & Wang, L. W. and W. C. and Y. J., and C. “Comparative histology in the liver and spleen of three species of freshwater teleost.” Neotropical Ichthyology, 15(7), 74017. . 2017.
 
[36]  Chen, C. Y., Chao, C. B., & Bowser, R. R. “Comparative histopathology of Streptococcus iniae and Streptococcus agalactiae-infected tilapia.” Bulletin of the European Association of Fish Pathologists, 27(1), 2–9. 2007.
 
[37]  Azadbakht F, Shirali, S., Ronagh, M. T., & Zamani, E. “Effect of Aeromonas hydrophila in the tissue structure of the liver and immune organs in Acanthopagrus latus.” Veterinary Researches and Biological Products, 31(3), 88–95. 2018.
 
[38]  Strzyzewska, E., Szarek, J., & Babinska, I. “Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: A review.” Veterinarni Medicina, 61(3), 123–132.
 
[39]  Huntingford, F. A., Adams, C., Braithwaite, V. A., Kadri, S., Pottinger, T. G., Sandøe, P., & Turnbull, J. F. “Current issues in fish welfare.” Journal of Fish Biology, 68(2), 332–372.
 
[40]  Alex, J. N., & Thomas, J. K. (2011). “Effects of the organophosphorous methyl parathion on the branchial epithelium of a freshwater fish Metynnis roosevelti (anabas tesudineus: Bloch).” Advances in Applied Science Research, 2(5), 167–172. 2011.
 
[41]  Maharajan, A., Kitto, M. R., Paruruckumani, P. S., & Ganapiriya, V. “Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper.” The Journal of Basic & Applied Zoology, 77, 21–30.
 
[42]  Hassaninezhad, L., Safahieh, A. R., Salamat, N., Savari, A., & Majd, N. E. “Assessment of gill pathological responses in the tropical fish yellowfin seabream of the Persian Gulf under mercury exposure.” Toxicology Reports, 1, 621–628.
 
[43]  Reddy, P., and Rawat, S. “Assessment of aquatic pollution using histopathology in fish as a protocol.” International Research Journal of Environment Sciences, 2, 79–82. 2013.
 
[44]  Ruiz-Picos, R., & López-López, E. “Gill and Liver Histopathology in Goodea atripinnis Jordan, Related to Oxidative Stress in Yuriria Lake, Mexico.” International Journal of Morphology, 30(3), 1139–1149.