International Journal of Partial Differential Equations and Applications
ISSN (Print): 2376-9548 ISSN (Online): 2376-9556 Website: https://www.sciepub.com/journal/ijpdea Editor-in-chief: Mahammad Nurmammadov
Open Access
Journal Browser
Go
International Journal of Partial Differential Equations and Applications. 2022, 9(1), 7-12
DOI: 10.12691/ijpdea-9-1-2
Open AccessReview Article

Review on Different Special Functions in Fractional Calculus

Bhaktaraj Thiyam1, , Konthoujam Ibochouba Singh2, Md. Indraman Khan3, Md. Mazhar Ul Haque4 and R.K Pratima Devi2

1Department of Mathematics, Manipur International University, Imphal, India

2Department of Mathematics, Manipur International University, Imphal

3Department of Mathematics, PETTIGREW College, Ukhrul, Manipur University

4Department of Mathematics, MAEER’s MIT Pune, MIT College, Nanded

Pub. Date: December 22, 2022

Cite this paper:
Bhaktaraj Thiyam, Konthoujam Ibochouba Singh, Md. Indraman Khan, Md. Mazhar Ul Haque and R.K Pratima Devi. Review on Different Special Functions in Fractional Calculus. International Journal of Partial Differential Equations and Applications. 2022; 9(1):7-12. doi: 10.12691/ijpdea-9-1-2

Abstract

In this paper, we reviewed the specific tasks involved in solving different mathematical equations or fractional integral. Since solutions for different component of modeling models from various fields such as physics, engineering, chemistry, biological etc. involve special work as part of their solutions, here, we review and include the type and general- ization of such specialized functions.

Keywords:
special functions fractional integral calculus Mittag-Leffler function Fox H-function hyper-Bessel function

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Nishimoto, K., An essence of Nishimoto’s Fractional Calculus, Descartes Press Co.1991.
 
[2]  B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, In: Fractional Calculus and Its Applications. Ed. by B. Ross., Lecture Notes in Mathematics. Springer Berlin Heidelberg, 457(1975), 1-36.
 
[3]  B. Ross. Fractional calculus. In: Mathematics Magazine 50(3) (1977), 115-122.
 
[4]  B. Ross, The development of fractional calculus 1695-1900. In: Historia Mathematica, 4(1) (1977), 75-89.
 
[5]  P.L. Butzer and U. Westphal. An introduction to fractional calculus. In: Applications of Fractional Calculus in Physics. Ed. by R. Hilfer. World Scientific, Chap. 3(2000).
 
[6]  K. Oldham and J. Spanier. The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, INC, San Diego Ca, 1974.
 
[7]  K. S. Miller and B. Ross.An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Inc., New York, NY, 1993.
 
[8]  S. Samko, A. Kilbas, and O. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London, 1993.
 
[9]  I. Podlubny. Fractional Differential Equations. Academic Press, INC, San Diego Ca, 1999.
 
[10]  K. Diethlem. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Berlin, Heidel-berg, 2010.
 
[11]  D. Baleanu, K. Diethlem, E. Scalas, and J.J. Trujillo. Fractional Calculus. Models and Numerical Methods. World Scientific, Singapore, 2012.
 
[12]  A. A. Kilbas, M. Srivastava H, and J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier Science, 2006.
 
[13]  F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticy. Imperial Collage Press, London, 2010.
 
[14]  Y. Povstenko. Fractional Thermoelasticy. Springer International Publishing, Cham, Heidel-berg, New York, Dodrecht, London, 2015.
 
[15]  Y. Povstenko. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhuser, Springer, Cham, Heidelberg, New York, Dodrecht, London, 2015.
 
[16]  A.M. Mathai, R.K. Saxena. The -function with Applications in Statistics and Other Disciplines Wiley East. Ltd., New Delhi (1978).
 
[17]  H.M. Srivastava, B.R.K. Kashyap Special Functions in Queuing Theory and Related Stochastic Processes Acad. Press, New York (1981).
 
[18]  H.M. Srivastava, K.C. Gupta, S.P. Goyal The -Functions of One and Two Variables with Applications South Asian Publs., New Delhi (1982).
 
[19]  A. Prudnikov, Yu. Brychkov, O. Marichev Integrals and Series, Some More Special Functions, vol. 3, Gordon & Breach, New York (1992).
 
[20]  V. Kiryakova Generalized Fractional Calculus and Applications Longman & J. Wiley, Harlow, New York (1994).
 
[21]  A.M. Mathai, H.J. Haubold Special Functions for Applied Scientists Springer (2008).
 
[22]  Richard Askey. The q -gamma and q -beta functions. Applicable Anal., 8(2): 125-141, 1978/79.
 
[23]  Richard Askey. Ramanujan’s extensions of the gamma and beta functions. Amer. Math. Monthly, 87(5):346-359, 1980.
 
[24]  M. Aslam Chaudhry and S. M. Zubair. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math., 55(1): 99-124, 1994.
 
[25]  M. Aslam Chaudhry and S. M. Zubair. On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms. J. Comput. Appl. Math., 59(3): 253-284, 1995.
 
[26]  Allen R. Miller. Reductions of a generalized incomplete gamma function, related Kampe de Feriet functions, and incomplete Weber integrals. Rocky Mountain J. Math., 30(2):703-714, 2000.
 
[27]  Larry C. Andrews. Special functions for engineers and applied mathematicians. Macmillan Co., New York, 1985.
 
[28]  M. Aslam Chaudhry, Asghar Qadir, M. Raque, and S. M. Zubair. Extension of Euler’s beta function. J. Comput. Appl. Math., 78(1): 19-32, 1997.
 
[29]  Agarwal R.P., A propos d’une note M. Pierre Humbert, C.R.Acad.Sci. Paris 236 (1953), pp.2031-2032.
 
[30]  Chouhan Amit and Satishsaraswat, Some Rmearks on Generalized Mittag-Leffler Function and Fractional operators, IJMMAC Vol2, No.2, pp. 131-139.
 
[31]  GM.Mittag - Leffler, Sur la nouvelle function of Eα(x), C.R.Acad. Sci. Paris 137 (1903), pp.554-558.
 
[32]  Humbert P. and Agarwal R.P., Sur la function de Mittag - Leffler et quelquesunes deses generalizations, Bull. Sci.Math. (2) 77 (1953), pp.180-186.
 
[33]  Mohammed Mazhar-ul-Haque and Holambe T.L., A Q function in fractional calculus, Journal of Basic and Applied Research International, International knowledge press, vol. 6, issue 4 (2015), pp.248-252.
 
[34]  Shukla A.K. and Prajapati J.C., On a generalization of Mittag - Leffler function and its properties, J.Math.Anal.Appl. 336(2007), pp.79-81.
 
[35]  Salim T.O. and Faraj O. , A generalization of Mittag-Leffler function and Integral operator associated with the Fractional calculus, Journal of Fractional Calculus and Applications, 3(5) (2012), pp.1-13.
 
[36]  Wiman A., Uber de fundamental satz in der theorie der funktionen, Acta Math. 29(1905), pp.191-201.
 
[37]  T. R. Prabhakar, A singular integral equation with a generalized Mittal-Leffler function in the Kernel, Yokohama Math. J., 19(1971), 7-15.
 
[38]  P. Delerue Sur le calcul symbolique variables et fonctions hyperbesseliennes (II) Annales Soc. Sci. Bruxelles, 1, 3 (1953), pp. 229-274.