[1] | A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60(1998), 857-899. |
|
[2] | N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl., 25(2015), 1663-1763. |
|
[3] | M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Models Methods Appl., 18(2005), 1685-1734. |
|
[4] | M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1(2006), 399-439. |
|
[5] | Y. Li. K. Lin, C. Mu, Boundedness and asymptotic behavior of solutions to a chemotaxis haptotaxis model in high dimensions, Appl. Math. Lett., 50(2015), 91-97. |
|
[6] | C. Stinner, C. Surulescu, G. Meral, A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA J. Appl. Math., 80(2015), 1300-1321. |
|
[7] | C. Stinner, C. Surulescu, A. Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Models Methods Appl., 26(2016), 2163-2201. |
|
[8] | A.R.A. Anderson, M.A.J. Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation, Appl. Math. Lett., 11(1998), 109-116. |
|
[9] | M.A.J. Chaplain, A.M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10(1993), 149-168. |
|
[10] | H.A. Levine, B.D. Sleeman, M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42(2001), 195-238. |
|
[11] | N. Paweletz, M. Knierim, Tumor related angiogenesis, Crit. Rev. Oncal. Hematol., 9(1989), 197-242. |
|
[12] | B.D. Sleeman, Mathematical modelling of tumor growth and angiogenesis, Adv. in Exp. Med. Bio., 428(1997), 671-677. |
|
[13] | A. Friedman, Mathematical biology. Modeling and analysis. CBMS Regional Conference Series in Mathematics, 127. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2018. |
|
[14] | E. Keller, L. Segel, Model for chemotaxis, J. Theor. Biol., 30(1970), 225-234. |
|
[15] | Y.Z. Chen, Second order parabolic partial differential equation(In Chinese), Peking University Press, 2003. |
|
[16] | R. Adams, Sobolev spaces. New York: Academic press, 1975. |
|
[17] | O. Ladyzhenskaky, V. Solonnikov, N. Uraltseva, Linear and quasilinear equations of parabolic type, Amer. Math., 1968. |
|
[18] | A. C. Fassoni, Mathematical modeling in cancer addressing the early stage and treatment of avascular tumors, PhD thesis, University of Campinas, 2016. |
|
[19] | A. Friedman, Partial differential equations of parabolic type, Prentice-Hall. Inc., Englewood Cliffs, N.J., 1964. |
|