[1] | Abdel-Kader, A.H. and Darweesh, H.H.M. “Setting and hardening of Agro/cement composites” BioResources, 4 (1), 2010, 43-54. |
|
[2] | Darweesh, H.H.M. “Setting, Hardening and Strength Properties of Cement Pastes with Zeolite Alone or in Combination with Slag”, Interceram International, 1, 2012, 52-57. |
|
[3] | Darweesh, H.H.M. “Hydration, Strength Development and Sulphate Attack of Some Cement Composites”, World Applied Sciences Journal 23 (2), 2013, 137-144. |
|
[4] | Darweesh, H.H.M. and Abo El-Suoud, M.R. “Setting, hardening and mechanical properties of some cement / agrowaste composites - Part I”, Amer. J. Mining and Metallurgy, Vol. 2, No. 2, 2014, 32-40. |
|
[5] | Darweesh, H.H.M. and Abo-El-Suoud, M.R. “Quaternary Cement Composites Containing Some Industrial By-products to Avoid the Environmental Pollution”, EC Chemistry 2.1, 2015, 78-91. |
|
[6] | Ramachandran, V.S.; Feldman, R.F.; “Concrete Admixtures Handbook, Properties, Science and Technology”, 2nd Edn.; Noyes PubIications: New Jersey, 1995. |
|
[7] | Chusilp, N., C. Jaturapitakkul and K. Kiattikomol, 2009. “Effects of LOI of Ground Bagasse Ash on the Compressive Strength and Sulfate Resistance of Mortars”. Construction and Building Materials, 23(12): 3523-3531. |
|
[8] | Sata, V., C. Jaturapitakkul and R. Chaiyanunt, 2010. “Compressive Strength and Heat Evolution of Concretes Containing Palm Oil Fuel Ash”. Journal of Materials in Civil Engineering, 22 (10): 1033-1038. |
|
[9] | Tangchirapat, W., Jaturapitakkul, C. and Chindaprasirt, P., 2009. “Use of Palm Oil Fuel Ash as a Supplementary Cementitious Material For Producing High-Strength Concrete”. Construction and Building Materials, 23(7): 2641-2646. |
|
[10] | Agarwal, S.K. and Deepali, G., 2006. “Utilization of Industrial Wastes and Unprocessed Micro-Fillers for Making Cost Effective Mortars”. Construction and Building Materials, 20 (10): 999-1004. |
|
[11] | Barnett, S. Journal, M.N. Soutsos, S.G. Millard and Bungey, J., 2006. “Strength Development of Mortars Containing Ground Granulated Blast Furnace Slag: Effect of Curing Temperature and Determination of Apparent Activation Energies”, Cem. Concr. Res., 36(3): 434-440. |
|
[12] | Binici, H., T. Huseyin and M.K. Mehmet, 2007. The Effect of Fineness on the Properties of theBlended Cements Incorporating GroundGranulated Blast Furnace Slag and GroundBasaltic Pumice. Construction and BuildingMaterials, 21(5): 1122-1128. |
|
[13] | Bouzoubaa N.B. Fournier, V.M. Malhotra andD.M. Golden, 2002. Mechanical Properties andDurability of Concrete Made With High Volume FlyAsh Blended Cement Produced in Cement Plant. ACI Materials Journal, 99(57): 560-567. |
|
[14] | Bouzoubaa, N., M.H. Zhang and V.M. Malhotra, 2001. Mechanical Properties and Durability ofConcrete Made With High-Volume Fly Ash BlendedCements Using a Coarse Fly Ash. Cement andConcrete Research, 31 (3): 1393-1402. |
|
[15] | Cheerarot, R. and C. Jaturapitakkul, 2004. A study of Disposed Fly Ash From Landfill To Replace Portland Cement. Waste Management, 24 (7): 701-709. |
|
[16] | Kiattikomol, K., C. Jaturapitakkul, S. Songpiriyakij and S. Chutubtim, 2001. A study of Ground Coarse Fly Ashes with Different Finenesses from Various Sources as Pozzolanic Materials. Cement and Concrete Composites, 23 (4-5): 335-343. |
|
[17] | Chindaprasirta, P., P. Kanchandaa, A. Sathonsaowaphaka and H.T. Cao, 2007a. SulfatResistance of Blended Cements Containing Fly Ashand Rice Husk Ash. Construction and BuildingMaterials, 21(6): 1356-1361. |
|
[18] | Chindaprasirt, P., S. Rukzon and V. Sirivivatnanon, 2008. Resistance to Chloride Penetration of BlendedPortland Cement Mortar Containing Palm Oil FuelAsh, Rice Hush Ash and Fly Ash. Construction andBuilding Materials, 22(5): 932-938. |
|
[19] | Dakroury, A.E. and M.S. Gasser, 2008. Rice Husk Ash(RHA) as Cement Admixture for Immobilization ofLiquid Radioactive Waste at Different Temperatures. Journal of Nuclear Materials, 381(3): 271-277. |
|
[20] | Safiuddin, M., J. West and K.A. Soudki, 2010. Hardened Properties of Self-Consolidating HighPerformance Concrete Including Rice Husk Ash. Cement Concrete and Composites, 32(9): 708-717. |
|
[21] | Coutinho, J., 2003. The Combined Benefits of CPF and RHA in Improving the Durability of Concrete Structures. Cement and Concrete Composites, 25(1): 51-59. |
|
[22] | Della, V.P., I. Kuhn and D. Hotza, 2002. Rice Husk Ash as an Alternate Source for Active Silica Production. Materials Letter, 57(4): 818-821. |
|
[23] | Jaturapitakkul, C., K. Kiattikomol, W. Tangchirapat and T. Saeting, 2007. Evaluation of the Sulfate Resistance of Concrete Containing Palm Oil Fuel Ash. Construction and Building Materials, 21(7): 1399-1405. |
|
[24] | Lertsatitthanakorn, C., S. Atthajariyakul and S. Soponronnarit, 2009. Techno-economical Evaluation of a Rice Husk Ash (RHA) Based Sand-Cement Block for Reducing Solar Conduction Heat Gain to a Building. Construction and Building Materials, 23(1): 364-369. |
|
[25] | Rukzon, S. and P. Chindaprasirt, 2009a. Strength and Chloride Resistance of Blended Portland Cement Mortar Containing Palm Oil Fuel Ash and Fly Ash. International Journal of Minerals, Metallurgy and Materials, 16(4): 475-481. |
|
[26] | Rukzon, S. and Chindaprasirt, P. 2009 “An Experimental Investigation of the Carbonation of Blended Portland Cement Palm Oil Fuel Ash Mortar in an Indoor Environment. Indoor and Built Environment”, 18(4): 313-318. |
|
[27] | Horton R., 2001, “Factor ten emission Reductions: The key to sustainable development and economic prosperity for the cement and concrete industry” Proc. 3rd CANMET/ACI Int. Symp. SP 202-I, 1-4. |
|
[28] | Malhotra V M, Mehta P. K. “High-performance, high-volume fly ash concrete: Materials, mixtures, proportioning, properties, construction practice and case histories”, Suppl. Cem. Mat. Sust. Develop. Inc. Ottawa, Canada, 2002. |
|
[29] | Duchesne J, Berube M. A., 1994 “The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: another look at the reaction mechanisms. Part I: Concrete expansion and portlandite depletion”, Cem. Concr. Res., 24, 1, 73-82. |
|
[30] | Diamond, S., 1997 “Alkali-silica reaction – some paradoxes”, Cem. Concr. Res., 19 (5-6), 391-401. |
|
[31] | Karim, M. R., Zain, M.F.M., Jamil, M., Lai, F.C. and Islam, M. N., 2012, “Strength of Mortar and Concrete as Influenced by Rice Husk Ash: A Review”, World Applied Sciences, 19, 10, 1501-1513. |
|
[32] | Malhotra, V.M., 1993 “Fly Ash, Slag, Silica Fume and Rice Husk Ash in Concrete: A Review”, Concrete International, 15, 4, 2-28. |
|
[33] | Safiuddin, M., J. West and K.A. Soudki, 2010. “Hardened Properties of Self-Consolidating High Performance Concrete Including Rice Husk Ash”, Cem. and Concr. Compos., 32 (9): 708-717. |
|
[34] | Barnett, S. Journal, M.N. Soutsos, S.G. Millard and Journalh Bungey, 2006. “Strength Development of Mortars Containing Ground Granulated Blast Furnace Slag: Effect of Curing Temperature and Determination of Apparent Activation Energies”, Cem. Concr. Res., 36, 3, 434-440. |
|
[35] | Agarwal, S.K. and G. Deepali, 2006. “Utilization of Industrial Wastes and Unprocessed Micro-Fillers for Making Cost Effective Mortars. Construction and Building Materials”, 20, 10, 999-1004. |
|
[36] | Golaszewski J., Szwabowski J., 2004 “The effect of condensed silica fume on cement-superplasticizer interaction” Proc. 1st Int. Conf. Nov. 9-11, Brno, Czech Republic, 93-98. |
|
[37] | Lea, F. M., “The chemistry of cement and concrete”, 3rd ed. Edward Arnold Ltd., 1970. |
|
[38] | ASTM –Standards “Standard Test Method for Normal water of consistency of hydraulic cement”, C187-86, 1993, 148-150. |
|
[39] | ASTM –Standards “Standard Test Method for Setting Time of Hydraulic Cement”, C191-92, 1993, 866-868. |
|
[40] | ASTM-Standards “Standard test method for compressive strength of dimension stone”, C170-90, 1993, 828-830. |
|
[41] | ASTM-Standards “Fluxural properties of ceramic materials”, C 674-71, 1977. |
|
[42] | Darweesh H.H.M., 2005 “Effect of the combination of some industrial wastes on the properties of Portland cement pastes. Part I”, iiC l'industria italiana del Cemento, 4, 298-310. |
|
[43] | Rukzon, S. and P. Chindaprasirt, 2009. An Experimental Investigation of the Carbonation of Blended Portland Cement Palm Oil Fuel Ash Mortar in an Indoor Environment. Indoor and Built Environment, 18 (4): 313-318. |
|
[44] | Hewlett, P., 2004, “Lea's Chemistry of cement and concrete”, 5th Ed. Elsevier Science & Technology Books Pub. |
|
[45] | Sata, V., C. Jaturapitakkul and R. Chaiyanunt, 2010. Compressive Strength and Heat Evolution of Concretes Containing Palm Oil Fuel Ash. Journal of Materials in Civil Engineering, 22 (10): 1033-1038. |
|
[46] | Rukzon, S. and P. Chindaprasirt, 2009. Strength and Chloride Resistance of Blended Portland Cement Mortar Containing Palm Oil Fuel Ash and Fly Ash. International Journal of Minerals, Metallurgy and Materials, 16 (4): 475-481. |
|
[47] | El-Didamony, H., Darweesh, H.H.M., Abdel-Aziz R., 2008 “Characteristics of pozzolanic cement composites-Part I: Physicomechanical properties”, Silicates Industriels (Ceramic Science & Technology), 73, Nr. 11-12, 193-200. |
|
[48] | Chindaprasirt, P. and S. Rukzon, 2008. Strength, Porosity and Corrosion Resistance of Ternary Blend Portland Cement, Rice Husk Ash and Fly Ash Mortar. Construction and Building Materials, 22(8): 1601-1606. |
|
[49] | Siddique, F., 2008. Waste Materials and By-products in Concrete. Springer Press. In: Givi, N.A., S.A. Rashid, F.N.A. Aziz and S.M.A. Mohd, 2010. Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review. Journal of American Sciences, 6(3): 157-165. |
|
[50] | Isaia, G.C., A.L.G. Gastaldini and R. Moraes, 2003. Physical and Pozzolanic Action of Mineral Additions on the Mechanical Strength of High-Performance Concrete. Cement and Concrete Composites, 25(1): 69-76. |
|