International Journal of Celiac Disease
ISSN (Print): 2334-3427 ISSN (Online): 2334-3486 Website: https://www.sciepub.com/journal/ijcd Editor-in-chief: Samasca Gabriel
Open Access
Journal Browser
Go
International Journal of Celiac Disease. 2022, 10(1), 39-46
DOI: 10.12691/ijcd-10-1-4
Open AccessReview Article

Recent Developments in Quorum Sensing-Based Suppression of Intestinal Pathogenic Bacteria

Safir Ullah Khan1, , Munir Ullah Khan2 and Wang Li Chen1

1School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China

2Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China

Pub. Date: September 05, 2022

Cite this paper:
Safir Ullah Khan, Munir Ullah Khan and Wang Li Chen. Recent Developments in Quorum Sensing-Based Suppression of Intestinal Pathogenic Bacteria. International Journal of Celiac Disease. 2022; 10(1):39-46. doi: 10.12691/ijcd-10-1-4

Abstract

Quorum sensing (QS) is a way for bacteria to communicate with each other. It works by making, releasing, and identifying AIs (autoinducers). It is critical for the growth of microorganisms and is a vital component of the immune system. In the intestinal environment, Salmonella Typhimurium, Vibrio cholera, Clostridium difficile, Escherichia coli and other intestinal pathogens infect the host body, affecting the normal immune metabolism process of the host body, resulting in acute gastroenteritis, dysentery and other diseases. Antibiotics can treat the concurrent infection caused by intestinal pathogens in the traditional treatment. Because of this, antibiotics should be used sparingly. Overuse of antibiotics can lead to the expansion of a wide range of antibiotic resistance in bacteria, which can then spread and evolve through genetic mutation. In recent years, more studies have shown that bacterial biofilm formation, virulence factor production, and drug resistance inhibition can be regulated by manipulating the QS system. Firstly, the working paths of several typical bacterial QS systems were summarized. The therapeutic strategies of QS for several common intestinal pathogens were reviewed to provide some references for developing new therapeutic schemes for intestinal diseases and related inhibitors of intestinal pathogens.

Keywords:
quorum sensing intestinal pathogens virulence factor biofilm formation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Dong X Yi L and Grenier D. “Research progress of bacterial quorum sensing receptors: classification, structure, function and characteristics”, Sci Total Environ, pages 2021-2021.
 
[2]  Papenfort K and Bassler B L. “Quorum sensing signal-response systems in gram-negative bacteria”, Nat Rev Microbiol, 14(9), 576-88, 2016.
 
[3]  Thompson J A and Oliveira R A. “Manipulation of the quorum sensing signal AI-2 affects the antibiotic- treated gut microbiota”, Cell Rep, 10(11), 1861-71, 2015.
 
[4]  Rather M A, Gupta K, and Mandal M. “Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea cartha genensis (Jacq.) J. F. Macbr. Leaf extract: an in vitro study”, J Ethnopharmacol, pages 2021-2021.
 
[5]  Feng L, W Bi, and Chen S. “Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica”, Food Microbiol, pages 2021-2021.
 
[6]  Hsiao A, Ahmed A M S, and Subramanian S. “Members of the human gut microbiota involved in recovery from Vibrio cholerae infection”, Nature, 515(7527), 423-429, 2014.
 
[7]  Nealson K H, Platt T, and Hastings J W. “Cellular control of the synthesis and activity of the bacterial luminescent system”, J Bacteriol, 104(1), 313-335, 1970.
 
[8]  Duerkop B A, J Varga, and Chandler J R. “Quorum- sensing control of antibiotic synthesis in Burkholderia thailandensis”, J Bacteriol, 191(12), 3909-3927, 2009.
 
[9]  Najmi S M and Schneider D A. “Quorum sensing regulates rRNA synthesis in Saccharomyces cerevisiae”, Gene, pages 2021-2021.
 
[10]  Puschhof J Pleguezuelos-Manzano C and Rosend-Ahl Huber A. “Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli”, Nature, 580(7802), 269-73, 2020.
 
[11]  Zagato E, Pozzi C, and Bertocchi A. “Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth”, Nat Microbiol, 2020(3), 511-535.
 
[12]  Arora A, T Behl, and Sehgal A. “Unravelling the involvement of gut microbiota in type 2 diabetes mellitus”, Life Sci, pages 2021-2021.
 
[13]  Ahator S D and Zhang L. “Small is mighty-chemical communication systems in Pseudomonas aeruginosa”, Annu Rev Microbiol, 73(1), 559-78, 2019.
 
[14]  Penders J Von Wintersdorff C J and Van Niekerk J M. “Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer”, Front Microbiol, 2016.
 
[15]  Dickey S W and Cheung G Y C and Otto M. “Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance”, Nat Rev Drug Discov, 16(7), 457-71, 2017.
 
[16]  Vasan N, J Baselga, and Hyman D M. “A view on drug resistance in cancer”, Nature, 575(7782), 299-309, 2019.
 
[17]  Aldeghi M and De Groot B L Gapsys V. “Predicting kinase inhibitor resistance: physics-based and data- driven approaches”, Acs Central Sci, 5(8), 1468-74, 2019.
 
[18]  Kharytonchyk S Brown J D and Chaudry I. “Struc- tural basis for transcriptional start site control of HIV- 1 RNA fate”, Science, 368(6489), 413-420, 2020.
 
[19]  Yadav V K, Singh P K, and Sharma D. “Autoinducer N-(3-oxododecanoyl)-l-homoserine lactone induces calcium and reactive oxygen species-mediated mitochondrial damage and apoptosis in blood platelets”, Microb Pathogenesis, pages 2021-2021.
 
[20]  Ahmed U and Shadid T M and Larabee J L. “Combined and distinct roles of agr proteins in clostridioides difficile 630 sporulation, motility, and toxin production”, Mbio, 2020.
 
[21]  Whitehead N A, Barnard A M L, and Slater H. “Quo- rum-sensing in gram-negative bacteria”, Fems Microbiol Rev, 25(4), 365-404, 2001.
 
[22]  Egland K A and Greenberg E P. “Quorum sensing in Vibrio fischeri: elements of the luxl promoter”, Mol Microbiol, 31(4), 1197-204, 1999.
 
[23]  Smith R S, Harris S G, and Phipps R. “The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflam-mation in vivo”, J Bacteriol, 184(4), 1132-1141, 2002.
 
[24]  Dubern J López-Martín M and Alexander M R. “AbaM regulates quorum sensing, biofilm formation, and virulence in Acinetobacter baumannii”, J Bacteriol, pages 2021-2021.
 
[25]  Ortori C A, Atkinson S, and Chhabra S R. “Comprehensive profiling of N-acylhomoserine lactones pro- duced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry”, Anal Bioanal Chem, 387(2), 497-511, 2007.
 
[26]  Hudaiberdiev S, Vera Choudhary K S, and Alvarez R. “Census of solo LuxR genes in prokaryotic genomes”, Front Cell Infect Mi, 2015.
 
[27]  Prescott R D and Decho A W. “Flexibility and adaptability of quorum sensing in nature”, Trends Microbiol, 2020(6), 436-480.
 
[28]  Styles M J, Early S A, and Tucholski T. “Chemical control of quorum sensing in E. coli: identification of small molecule modulators of sdiA and mechanistic characterization of a covalent inhibitor”, Acs Infect Dis, 2020(12), 3092-103.
 
[29]  H Culler, Couto S, and Higa J. “Role of SdiA on biofilm formation by atypical enteropathogenic Escherichia coli”, Genes-Basel, 2018.
 
[30]  D E Pereira C S, Regt A K, and Brito P H. “Identification of functional LsrB-like autoinducer-2 receptors”, J Bacteriol, 191(22), 6975-87, 2009.
 
[31]  Xavier K B and Bassler B L. “Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli”, J Bacteriol, 187(1), 238-286, 2005.
 
[32]  Pereira C S, Mcauley J R, and Taga M E. “Sinorhizobium meliloti, a bacterium lacking the autoinducer- 2 (AI-2) synthase, responds to AI-2 supplied by other bacteria”, Mol Microbiol, 70(5), 1223-1258, 2008.
 
[33]  James D Shao H and Lamont R J. “Differential interaction of Aggregatibacter (Actinobacillus) acti- nomycetemcomitans LsrB and RbsB proteins with autoinducer 2”, J Bacteriol, 189(15), 5559-65, 2007.
 
[34]  Rui F, Marques J C, and Miller S T. “Stereochemical diversity of AI-2 analogs modulates quorum sensing in Vibrio harveyi and Escherichia coli”, Bioorgan Med Chem, 20(1), 249-56, 2012.
 
[35]  Xavier K B Miller S T, Campagna S R, and Salmo- Nella. “Typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2”, Mol Cell, 15(5), 677-87, 2004.
 
[36]  SONG S, WOOD T K. The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation [J]. Microorganisms, 2021.
 
[37]  Taga M E, Miller S T, and Bassler B L. “Lsr-mediated transport and processing of AI-2 in Salmonella Typhimurium”, Mol Microbiol, 50(4), 1411-1438, 2003.
 
[38]  Xue T, L Zhao, and Sun H. “LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing”, Cell Res, 19(11), 1258-68, 2009.
 
[39]  Torcato I M, Kasal M R, and Brito P H. “Identification of novel autoinducer-2 receptors in Clostridia reveals plasticity in the binding site of the LsrB receptor family”, J Biol Chem, 294(12), 4450-63, 2019.
 
[40]  Zuo J, H Yin, and Hu J. “Lsr operon is associated with AI-2 transfer and pathogenicity in avian pathogenic”, Escherichia coliVet Res, 2019.
 
[41]  RUTHERFORD S T, VAN KESSEL J C, SHAO Y, et al. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios [J]. Gene Dev, 2011, 25(4): 397-408.
 
[42]  Papenfort K and Cong Förstner K U. “Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation”, Proc Natl Acad Sci, 112(7), 766-75, 2015.
 
[43]  Huang Q, Y Xie, and Yang Z. “The cytoplasmic loops of AgrC contribute to the quorum-sensing activity of Staphylococcus aureus”, J Microbiol, 59(1), 92-100, 2021.
 
[44]  Yang Y, Koirala B, and Sanchez L A. “Structure- activity relationships of the competence stimulating peptides (CSPs) in Streptococcus pneumoniae reveal motifs critical for intra-group and cross-group ComD receptor activation”, Acs Chem Biol, 12(4), 1141-51, 2017.
 
[45]  Neiditch M B and Prehna Capodagli G C. “Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria”, Annu Rev Genet, 51(1), 311-344, 2017.
 
[46]  West K H J Vasquez J K and Yang T. “Conforma- tional switch to a β-turn in a staphylococcal quorum sensing signal peptide causes a dramatic increase in potency”, J Am Chem Soc, 142(2), 750-61, 2019.
 
[47]  Barrasso K, Watve S, and Simpson C A. “Dual- function quorum-sensing systems in bacterial pathogens and symbionts”, PLoS Pathog, pages 2020-2020.
 
[48]  Li W R, Zeng T H, and Yao J W. “Diallyl sulfide from garlic suppresses quorum-sensing systems of Pseudomonas aeruginosa and enhances biosynthesis of three B vitamins through its thio-ether group”, Microb Biotechnol, 14(2), 677-91, 2021.
 
[49]  Y Hikichi, Y Mori, and Ishikawa S. “Regulation in- volved in colonization of intercellular spaces of host plants in Ralstonia solanacearum”, Front Plant Sci, 2017.
 
[50]  Zhao L, Duan F, and Gong M. “+)-terpinen-4-ol in- hibits Bacillus cereus biofilm formation by upregulating the interspecies quorum sensing signals dike- topiperazines and diffusing sig-naling factors”, J Agr Food Chem, 69(11), 3496-510, 2021.
 
[51]  Li Q, J Pellegrino, and Lee D J. “Synthetic group a streptogramin antibiotics that overcome vat resistance”, Nature, 586(7827), 145-50, 2020.
 
[52]  Defoirdt T. “Quorum-sensing systems as targets for antivirulence therapy”, Trends Microbiol, 26(4), 313-341, 2018.
 
[53]  Ahmer B M M. “Cell-to-cell signalling in Escherichia coli and Salmonella enterica”, Mol Microbiol, 52(4), 933-978, 2004.
 
[54]  Lee E Birhanu B T and Lee S. “Targeting Salmonella Ty-phimurium invasion and intracellular survival using pyrogallol”, Front Microbiol, pages 2021-2021.
 
[55]  Quah Y Mechesso A F and Park S. “Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium”, J Ginseng Res, 45(1), 75-85, 2021.
 
[56]  Shen C, Islam M T, and Masuda Y. “Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium”, Appl Microbiol Biot, 104(12), 5427-5463, 2020.
 
[57]  H Seo and Kang S. “Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium”, Food Con- trol, pages 2020-2020.
 
[58]  Watve S, Barrasso K, and Jung S A. “Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host”, PLoS Pathog, pages 2020-2020.
 
[59]  MALKA O, KALSON D, YANIV K, et al. Cross-kingdom inhibition of bacterial virulence and communication by probiotic yeast metabolites [J]. Microbiome, 2021.
 
[60]  BHATTACHARYA S P, BHATTACHARYA A, SEN A. A comprehensive and comparative study on the action of pentacyclic triterpenoids on Vibrio cholerae bioflms [J]. Microb Pathogenesis, 2020.
 
[61]  Yang J and Yang H. “Transcriptome analysis of the Chloridoids difficile response to different doses of Bifidobacterium breve”, Front Microbiol, pages 2020-2020.
 
[62]  Lim J Yong C C and Kim B K. “Suppressive effect of Lac-tobacillus fermentum Lim2 on Clostridioides difficile 027 toxin production”, Lett Appl Microbiol, 68(5), 386-93, 2019.
 
[63]  Shivaprasad D P, Taneja N K, and Lakra A. “In vitro and in situ abrogation of biofilm formation in E. coli by vita-min C through ROS generation, disruption of quorum sensing and exopolysaccharide production”, Food Chem, pages 2021-2021.
 
[64]  Li J Yuan Y and Lin J. “Extracellular products- mediated interspecific interaction between Pseudomonas aeruginosa and Escherichia coli”, J Micro- biol, 59(1), 29-40, 2021.