International Journal of Celiac Disease
ISSN (Print): 2334-3427 ISSN (Online): 2334-3486 Website: https://www.sciepub.com/journal/ijcd Editor-in-chief: Samasca Gabriel
Open Access
Journal Browser
Go
International Journal of Celiac Disease. 2022, 10(1), 5-7
DOI: 10.12691/ijcd-10-1-2
Open AccessArticle

Trafficking of Cobalamin Transport Carrier Proteins in Celiac Disease

Hugh James Freeman1,

1UBC Hospital, 2211 Wesbrook Mall, Vancouver, BC, Canada

Pub. Date: September 05, 2022

Cite this paper:
Hugh James Freeman. Trafficking of Cobalamin Transport Carrier Proteins in Celiac Disease. International Journal of Celiac Disease. 2022; 10(1):5-7. doi: 10.12691/ijcd-10-1-2

Abstract

Absorption of vitamin B12 is normally complex, involves multiple carriers leading to uptake of this micronutrient in the distal small intestine. Vitamin B12 is mainly from animal sources and, after ingestion, becomes complexed to haptocorrin derived from salivary glands to prevent acid destruction in the stomach. In the duodenum, pancreatic proteases hydrolyze this haptocorrin permitting vitamin B12 binding to intrinsic factor, a protein derived from gastric parietal cells. Linkage to intrinsic factor permits trafficking to the cubulin receptor in the ileum allowing entry into the enterocyte. After uptake, vitamin B12 exits the cell linking to another carrier protein in the blood, transcobalamin II. This process allows the micronutrient to circulate systemically to other cells. In celiac disease, one or more steps in this intestinal absorptive process may be impaired leading to significant neurologic, hematologic and, often poorly appreciated, further superimposed gastrointestinal effects.

Keywords:
Vitamin B12 celiac disease absorption Cobalamin haptocorrin intrinsic factor transcobalamin

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Spray GH. Absorption of vitamin B12 from the intestine. Proc Nutr Soc 1967; 26: 55-59.
 
[2]  Schjonsby H. Vitamin B12 absorption and malabsorption. Gut 1989; 30: 1686-1691.
 
[3]  Gherasim C, Lofgren M, Banerjee R. Navigating the B12 road: assimilation, delivery, and disorders of cobalamin. J Biol Chem 2013; 288: 13186-13193.
 
[4]  Martin-Masot R, Nestares MT, Diaz-Castro J, Lopez-Aligaga I, Alferez MJM, Moreno-Fernandez J, Maldonado J. Multifactorial etiology of anemia in celiac disease and a gluten-free diet: a comprehensive review. Nutrients 2019; 11: 2557.
 
[5]  Freeman HJ. Iron deficiency with anemia in adult celiac disease: complication or presenting clinical feature. Inter J Celiac Dis 2021; 9: In press.
 
[6]  Hodgkin DC, Kamper I, Mackay M, Pickworth J, Trueblood KN, White JG. Structure of vitamin B12. Nature 1956; 178: 64-66.
 
[7]  Faroozan P, Trier JS. Mucosa of the small intestine in Pernicious Anemia. N Engl J Med 1967; 277: 553-559.
 
[8]  Bianchi A, Chipman DW, Dreskin A, Rosensweig NS. Nutritional folic acid deficiency with megaloblastic small bowel epithelium. N Engl J Med 1970; 282: 859-861.
 
[9]  Morkbak AL, Poulsen SS, Nexo E. Haptocorrin in humans. Clin Chem Lab Med 2007; 45: 1751.
 
[10]  Wuerges J, Geremia S, Randagio L. Structural study on ligand specificity of human vitamin B12 transporters. Biochem J 2007; 403: 431-440.
 
[11]  Kozyraki R, Kristiansen M, Silahtaroglu A, Hansen C, Jacobsen C, Tommerup N, Verroust PJ, Moestrup SK. The human intrinsic factor-vitamin B12 receptor, cubulin. Molecular characterization and chromosomal mapping of the gene to 10p within the autosomal racessive megaloblastic anemia (MGA1) region. Blood 1998; 91: 3593-3600.
 
[12]  Halfdanarion TR, Kumar N, Hogan WJ. Murray JA. Copper deficiency in celiac disease. J Clin Gastroenterol 2009; 43: 162-164.
 
[13]  Cavallieri F, Fin N, Contardi S, Fiorini M, Corradini E, Valzania F. Subacute copper-deficiency myelopathy in a patient with occult celiac disease. J Spinal Cord Med 2017; 40: 489-491.
 
[14]  Tran CD, Katsikeros R, Manton N, Krebs NF, Hambridge KM, Butler RN, Davidson GP. Zinc homeostasis and gut function in children with celiac disease. Am J Clin Nutr 2011; 94: 1026-1032.
 
[15]  Murray JA, Rubio-Tapia A, Van Dyke CT, Brogan DL, Knipschield MA, Lahr B, Rumalla A, Zinsmeister AR, Gostout CJ. Mucosal atrophy in celiac disease: extent of involvement, correlation with clinical presentation, and response to treatment. Clin Gastroenterol Hepatol 2008; 6: 186-xxx.
 
[16]  MacDonald WC, Brandborg LL, Flich AL, Trier J, Rubin CE. Studies of celiac sprue IV: the response of the whole length of the small bowel to a gluten-free diet. Gastroeneterology 1964; 47: 573-589.
 
[17]  Freeman HJ, Webber D. Ileal intra-epithelial lymphocytosis: a pathological clue to clinically occult adult celiac disease. Inter J Celiac Dis 2017; 5: 40-42.
 
[18]  Quigley EM, Carmichael HA, Watkinson G. Adult onset celiac disease (celiac sprue), Pernicious anemia and IgA deficiency. Case report and review of relationships between vitamin B12 deficiency, small intestinal mucosal disease and IgA deficiency. J Clin Gastroenterol 1986; 8: 277-281.
 
[19]  Freeman HJ, Whittaker JS. Non-alcoholic chronic pancreatitis with pancreatic calcification: presenting manifestation of occult celiac disease. Can J Gastroenterol 1994; 8: 319-322.
 
[20]  Freeman HJ. Pancreatic endocrine and exocrine changes in celiac disease World J Gastroenterol 2007; 13: 6344-6346.