American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: https://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2017, 5(2), 61-67
DOI: 10.12691/env-5-2-5
Open AccessReview Article

Metal-organic Frameworks as Novel Adsorbents: A Preview

Ebelegi Newton Augustus1, Ayawei Nimibofa1, , Inengite Azibaola Kesiye1 and Wankasi Donbebe1

1Department of Chemical Sciences, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria

Pub. Date: August 23, 2017

Cite this paper:
Ebelegi Newton Augustus, Ayawei Nimibofa, Inengite Azibaola Kesiye and Wankasi Donbebe. Metal-organic Frameworks as Novel Adsorbents: A Preview. American Journal of Environmental Protection. 2017; 5(2):61-67. doi: 10.12691/env-5-2-5

Abstract

Adsorption processes are among the most patronized applications of Metal-Organic Frameworks. Through adsorption MOFs have found usefulness in diverse sectors of human endeavors such as; removal of noxious and harmful substances (dyes and heavy metals from liquid/gaseous media discharged from industries), storage and sequestration of gases (carbon dioxide, methane and hydrogen), separation and purification of gases/petroleum products, catalytic processes and drug delivery. Functionalized MOFs can indeed show spectacular effects owing to the introduction of more active functional groups. Therefore, the performance and applicability of MOFs as sorbents in industrial processes depends on the degree of introduced functionality, high surface area and enhanced porosity.

Keywords:
metal organic framework porous coordination polymer organic linkers ligands

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Ryder, M.R. and Tan, J.C. Nanoporous Metal Organic Framework Materials For Smart Applications. Material Science and Technology. 2014. vol.30. (3a).
 
[2]  Gispert, J. R. Coordination Chemistry. Crystal Engineering: Metal Organic Frameworks (MOFs). WILEY-VCH. 2008.
 
[3]  Chemistry World, October, 2009. http://www.rsc.org/chemistryworld.
 
[4]  Yaghi, O.M., Li,G.and Li, H. Selective Binding and Removal of Guests in Microporous Metal-Organic Framework. Nature, 1995. 378, pp.703-706.
 
[5]  Cheetam, A.K., Rao, C.N.R. and Feller, R.K. Chem. Commun. 2006. 4780.
 
[6]  United States of America, Department of Energy, Basic Research Needs for Carbon Capture: Beyond 2020. 2010. http://go.nature.com/ibM9qj.
 
[7]  Park,H., Britten, J.F., Mueller,U., Lee, J. Li, J. and Parise, J.B. Chem. Mater. 2007. 19, 1302.
 
[8]  United States of America, Department of Energy. Basic Research Needs for the Hydrogen Economy. 2004. http://go.nature.comGZYzy6.
 
[9]  Wang, S.B. and Peng, Y.L. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010.156, pp.11-24.
 
[10]  Namazi, H., Heydari, A. and Pourfarzollar. A Synthesis of Glycoconjugated Polymer based on Polystyrene and Nanoporous β-Cyclodextrin to remove Copper II from Water Pollution. Int. J. Polym. Mater. Biomater. 2014. 63, pp. 1-6.
 
[11]  Zheng, L., Ding, A.Z. and Ding, W.C. Compare Study of a New type of Adsorbent and 2 Traditional Adsorbents on their Efficiency for As(v) Adsorption. In Proceedings of 2010 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE). Chengdu, China. 2010. pp. 1-4.
 
[12]  Ongkudon, M..C., Kansil, T. and Wong, C. Challenges and Strategies in the Preparation of Large volume Polymer-based monolithic Chromatography Adsorbents. J. Sep. Sci. 2014. 37. pp. 455-464.
 
[13]  Lata,S. and Samadder, S.R. Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review. J. Environ. Manag. 2016. 166, pp. 387-406.
 
[14]  Ding, L.H., Rahimi, P., Hawkins, R., Bhatt, S. and Shi,Y. Naphthenic Acid Removal from Heavy Oils on Alkaline –earth metal oxides and Zinc oxide Catalysts. App. Catal. Gen.371, 2009. pp. 121-130.
 
[15]  Wang, X.Y., Du, Y. and Ma, J. Novel Synthesis of Carbon Sphere supported Nano scale Zero-valent Iron for removal of Metronidazole. App.Surf. Sc. 390, 2016. pp. 50-59.
 
[16]  Bowman, J.K. Alfred Werner Revisited: Coordination Chemistry of Anions. Accounts of Chemical Research.38, 2005. pp. 671-678.
 
[17]  Furukawa, H., Cordava, K.E., O’Keefe, M. and Yaghi, O.M. The Chemistry and Application of Metal-Organic frameworks. Science. 341. 123044.
 
[18]  Kitagawa, S., Kituara,R. and Noro, S.I. (2004). Functional Porous Coordination Polymers. Angewandte Chemie. International edition, 43, 2013. pp. 2334-2375.
 
[19]  Moulton,B. and Zworotko,M.J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in network Solids. Chemical Reviews. 101, 2001. pp.1629-1658.
 
[20]  Eddaoudi, M., Li, H. and Reinek, T. Design and Synthesis of Metal-Carboxylate Framework with Permanent Micro porosity. Topics in Catalysis. 905. 1999. pp. 105-111.
 
[21]  Li, H.,Eddaoudi,M., O’Keefe, M. and Yaghi,O.M. Design and Synthesis of an Exceptionally Stable and highly Porous Metal-Organic Framework. Nature, 402. 1999. pp. 276-279.
 
[22]  O’Keefe, M. and Yaghi, O.M. New Micro-porous Crystalline Materials: MOFs, COFs and ZIFs. Transactions of the Symposium held at the 2010, American Crystallographic Association Annual meeting, Chicago IL, July, 2010. pp. 24-29.
 
[23]  Schoedel, A. and Yaghi, O.M. Porosity in Metal-Organic Compounds, Microcyclic and Spramolecular Chemistry : How Izatt-Christensen Award winners shaped the field .First edition, John Wiley and Sons, Ltd, 2016. pp. 201-219.
 
[24]  Eddaoudi, M., Kim, J. and Rosi, N Systematic design of Pore Size and Functionality in Isorecticular MOFs and their Application in methane storage. Science, 295. 2002. pp. 469-472.
 
[25]  Tranchemontagne, D.J., Hunt, J.R. and Yaghi,O.M. Room Temperature Synthesis of Metal-Organic Frameworks: MOG-5, MOF-74, MOF-177, MOF-199 and IRMOF-0. Tetrahedron. 64, 2008. pp. 8553-85577.
 
[26]  Hong, W.Y., Perera, S.P. and Burrows, A.D. Manufacturing of Metal-Organic Framework Monoliths and their Application in CO2 Adsorption. Microporous and Mesoporous Materials. 2015. 214, pp. 149-155.
 
[27]  Dey, C., Kundu, T., Bishnu, P., Mallick, A. and Banerjee, R. Crystalline Meta-Organic Frameworks (MOFs): Synthesis, Structure and Function. Acta. Cryst. B 70, 2014. pp.7-10.
 
[28]  Shen, L. Synthesis, Characterization and Application of Meta-Organic Frameworks. Dissertation Submitted to the Graduate College of the University of Illinois at Urbana – Champaign, Urbana – Illinois, 2012. pp. 6-7.
 
[29]  Lee, Y.R., Kim, J. and Ahn,W.S. Synthesis of Metal-Organic Frameworks: A mini review. Korean Journal of Chemical Engineering. 30(9), 2013. pp. 1667-1680.
 
[30]  He, J.H., Zhang, Y.T., Pan, Q.H., Yu, J.H., Ding, H. and Xu, R.R. Microporous Mesoporous Materials. 90, 2006. pp. 145-152.
 
[31]  Hindelang, K., Vagin, S.I., Anger,C. and Rieger, B. Tandem Post Synthesized modification for Functionalized Metal-Organic Frameworks via Epoxidation and subsequent Epoxide ring opening. Chem. Commun. 48, 2012. pp. 2888-2890.
 
[32]  Carson, C.G., Brown, A.J., Sholl, D.S. and Nairs, S. Sonochemical Synthesis and Characterization of Submicrometer crystals of Metal- Organic Framework Cu[(hfipbb)(H2hfipbb)0.5]. Cryst. Growth Des. 11(10), 2011. pp. 4505-4510.
 
[33]  Yoo, Y., Valera-Guerrero, V. and Jeong, H. Isorecticular Metal-Organic Frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying, Langmuir. 27(6), 2011. pp. 2652-2657.
 
[34]  Martinea,A., Juan-Alcaniz, J., Sera-Crespo, P., Kapteijn, F. and Gascon, J. Electrochemical synthesis of some Archetypical Zn2+, Cu2+ , and Al3+ Metal-Organic Frameworks. Cryst. Growth Des. 12(7), 2012. pp. 3489-3498.
 
[35]  Jean-Louis, D. and Friŝĉ iĉ, T. Mechanochemistry: A force of Synthesis. ACS, Cent. 2016.
 
[36]  Hann, T.T., Li, C.F., Guo,X.Y., Huang, H.L., Liu,D.H. and Zhong,C.L. In-situ Synthesis of SiO @MOF Composites for high Efficiency Removal of Aniline from Aqueous Solutions. App.Surf. Sc. 390. 2016. pp. 506-512.
 
[37]  Martin,R.L. and Haranczyk. Optimization-Based Design of Metal-Organic Framework Materials. Journal of Chemical Theory and Computation. Vol. 9 (6), 2013. pp. 2816-2825.
 
[38]  Bauman, T.F. Metal-Organic Frameworks: Literature Survey and Recommendation of Potential Sorbent Materials. (Review of MOF Materials). Lawrence Livermore National Laboratory, LLNL-TR-430112. 2010.
 
[39]  Bae, Y.S. and Snurr, R.O. Development and Evaluation of Porous Materials for Carbon dioxide Separation and Capture. Angew. Chem. Int. Ed. Engl. Vol.50 (49), 2011. pp. 11586-11596.
 
[40]  Li, J.R., Kuppler,R.J. and Zhou, H.C. Selective Gas Adsorption Separation in Metal-Organic Frameworks. Chem. Soc. Rev: 38 (5), 2009. pp. 477-504.
 
[41]  Ma, S. Gas Applications of Porous Metal-Organic Frameworks. Pure. Appl. Chem, Vol.81 (12), 2009. pp. 2235-2251.
 
[42]  Dybtsev, D.N., Chun, H., Yoon, S.H., Kim,D. and Kim,K. Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and High Selectivity gas Sorption Properties. Journal of American Chemical Society. 126 (1), 2004. pp. 32-33.
 
[43]  Ma, S., Wang, X.S., Collier, C.D., Mani, E.S. and Zhou, H.C. Inorganic Chemistry. 2007. 46. 8499.
 
[44]  Rowsell, J.I.C and Yaghi, O.M. Effects of Functionalization, Catenation and Variation of the Metal Oxide and Organic Linking Units on the low Pressure Hydrogen Adsorption properties of Meta-Organic Frameworks. J.Am. Chem. Soc. 128, 2006. pp. 1304-1315.
 
[45]  Helmolt von, R. and Eberle, U. Fuel Cell Vehicles: Status 2007. Journal of Power Sources. Vol.165 (2), 2007. pp. 833-843.
 
[46]  Kunowsky, M., Marco-Lozar, J.P and Linares-Solano, A. Review Article: Material Demands for Storage Technologies in a Hydrogen Economy. Journal of Renewable Energy. Hindawi Publishing Corporation. Article I.D: 878329. 2013.
 
[47]  Eberle, U., Felderhoff, M. and Schüth. F. “Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie-International Edition. Vol.48 (36), 2009. pp. 6608-6630.
 
[48]  Vitillo, J.G., Richiardi, G., Spoto,G. and Zechinna, A. Theoretical Maximum Storage of Hydrogen in Zeolitic Frameworks. Physical Chemistry, Chemical Physics.vol. 7 (23), 2005. pp. 3948-3954.
 
[49]  Nijkamp, M.G., Raaymakers, J.E.M., Van Dillen, A.J. and De Jong, K.P. Hydrogen Storage Using Physisorption Materials Demands. Applied Physics. A. VOL. 72 (5). 2001. pp. 619-623.
 
[50]  Goldberg, D., Bando,Y. Tang, C. AND Zni, C. Boron Nitride Nanaotubes. Advanced Materials. Vol. 19 (18), 2007. pp. 2413-2432.
 
[51]  Portehault, D., Giordano, C. and Gervais. High Surface Area Nano Porous Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials. Vol. 20 (11), 2010. pp. 1827-1833.
 
[52]  Tian, Y.H., Buckley, C.E., Wang, S.B. and Zhou, M.E. Enhanced Hydrogen Storage Capacity in Carbon Aerogels Treated with KOH. Carbon. Vol. 47 (8), 2009. pp. 2128-2130.
 
[53]  Lee, Y.Y., Wood, C.D., Bradshaw, D., Rosseinsky, M.J. and Cooper, A.J Hydrogen Adsorption in Microporous Hypercrosslinked Polymers. Chemical Communications. 25. 2006. pp. 2670-2672.
 
[54]  Saha, D. and Deng, S. Hydrogen Adsorption on Metal-Organic Framework-177. Tsinghun Science and Technology. vol.15 (4). 2010. pp. 363-376.
 
[55]  Mohd Saufi, M.Z. and Syed Shatir, A.S.H. Methane Adsorption Performance of Palm Kernel Derived Carbon Material Activated using CO2 – Steam Sequential combination. Malaysian Journal of Analytical Sciences. Vol. 20 (6). 2016. 1390-1397.
 
[56]  Noro, S., Kitagawa, S., Kondo, M. and Seki, L. A New Methane Adsorbent. Porous Coordination Polymer. 39 (12). 2000. pp. 2081-2084.
 
[57]  Duan, X., Yu, J., Cai, J., He, Y., Wu, C., Zhou, W., Yildirimi, T, Zhang, Z., Xiand, S., O’Keefe, M., Chen, B. and Qian.B. A Microporous Metal-Organic Framework of Rare Sty Topology for High CH4 Storage at Room Temperature. Chem. Comm. 49. 2013. pp. 2043-2045.
 
[58]  Ambia, M., Sedighi, A. and Salehi, S. Evaluation of Methane Adsorption on Modified Zeolite 3X. Iranica Journal of Energy and Environment. Vol. 7 (1) 2016. pp. 221-225.
 
[59]  Stadie, N.P., Murialdo, M., Ahn, C.C. and Fultz, B. Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Journal of Physical Chemistry. 119 (47). 2015. pp. 26409-26421.
 
[60]  Wu, H., Zhou, W. and Yildirimi, T. High Capacity Methane Storage in Metal-Organic Framework M2(dhtp): The important Role of Open Metal Sites. Journal of the American Chemical Society. 131 (13), 2009. pp. 4995-5000.
 
[61]  Ma, S. Gas Adsorption Applications of Porous Metal-Organic Frameworks. Pure. Appl. Chem. Vol. 81(12). 2009. pp. 2235-2251.
 
[62]  Sayaria, A., Belmabkhout, Y and Serna-Guerrero, R. Flue Gas Treatment via CO2 Adsorption. Chemical Engineering Journal. 230. 2011. pp. 380-388.
 
[63]  Kelut, P., Kulkarni, K. and Kulkarni, A.D. CO2 Adsorption by various Catalysts. Chemical and Process Engineering Research. Vol. 18, 2014. pp. 7-15.
 
[64]  Zhang, Z.J., Zhang, W., Chen, X., Xia, Q.B. and Li, Z. Adsorption of CO2 on Zeolite 13X and Activated Carbon with Higher Surface Area. Sep. Sc. Technol. 45. (5), 2010. pp. 710-719.
 
[65]  Millward, A.R. and Yaghi, O.M. Metal-Organic Frameworks with Exceptional High Capacity for Storage of Carbon dioxide at Room Temperature. Journal of the American Chemical Society. Vol. 127 (51). 2005. pp. 17998-17999.
 
[66]  Drese, J.H., Choi,S., Lively, R.P., Koros, W.J., Fauth, D.J., Gray, M.L. and Jones, C.W. Structure, Property relationships of Hyper branched Amino silica CO2 Adsorbents. Advanced Functional Materials.vol.19 (23). 2009. pp. 3821-3832
 
[67]  Jörg, P.T., Girgsdies, F., Schlogl and Hess, C. Pore Structure and Surface AREA OF Silica SBA-15: Influence of Washing and Scale-up. Beistein Journal of Nanotechnology. 2, 2011. pp. 110-119.
 
[68]  Ahmed, T., and Jhung, S.H. Composites of Metal-Organic Framework: Preparation and Application in Adsorption. Materials Today. Vol.17 (3), 2014. pp. 136-146.
 
[69]  Khan, N.A., Hasan, Z. and Jhung, S.H. Adsorption and Removal of Sulfur or Nitrogen containing Compounds with Metal-Organic Frameworks (MOFs). Adv. Porous. Mater. Vol.1 (1), 2013. pp. 91-102.
 
[70]  Burtch, N.C., Jsuja, H. and Walton, K.S. Water Stability and Adsorption in Metal-Organic Frameworks. Chem. Rev. 114. 2014. pp. 10575-10612.
 
[71]  Zhang, K.D., Zhan, Z.Q., Tsai, F.C., Yu, X.Y., Zeng, X.Z., Jiang, X.Z., Jiang, T., Shi,D. and Chang, C.J. Adsorption behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from water. Materials.10 (205), 2017. pp. 1-11.
 
[72]  Shooto, N. D., Ayawei, N., Wankasi, D., Sikhwivhilu, L. and Dikio, E. D. Study on Colbat-Metal Oarganic Framework Materials as adsorbent for Lead ions Removal in Aqueous Solutions. Asia Journal of Chemistry. 28(2). 2016. pp. 277-281.
 
[73]  Zhao, X., Lius, S., Tang, Z., Niu, H., Cai, Y., Meng, W., Wu, F. and GEISY, J.P. Synthesis of Magnetic Metal-Organic Framework (MOF) for Efficient Removal of Organic Dyes from Water. Scientific Reports. 2015. 5, 11849.
 
[74]  Xue, H., Chen, Q., Jiang, F., Yuan, D., Lv, G., Liang, L., Liu, L. and Hong, M. A regenerative Metal-Organic Framework fro Reversible Uptake of Cd(II): From Effective Adsorption to In-situ Detection. Chemical Science. 7, 2016. pp. 5983-5988.