American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: https://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2025, 13(1), 16-30
DOI: 10.12691/env-13-1-3
Open AccessArticle

Land Use/Land Cover Dynamics Effects on Urban Heat Islands: A Case Study of Dakar Region

Noé Valentin Loembet Makaya1, 2, , Mamadou Lamine Ndiaye2, Vieux Boukhaly Traore3 and Omar Ngor Thiam3

1Institut Supérieur d’Informatique (ISI), Dakar, Senegal

2Centre de Suivi Ecologique (CSE), Dakar, Senegal

3Fluid Mechanics, Hydraulics and Transfers Laboratory, Cheikh Anta Diop University, Dakar, Senegal

Pub. Date: May 05, 2025

Cite this paper:
Noé Valentin Loembet Makaya, Mamadou Lamine Ndiaye, Vieux Boukhaly Traore and Omar Ngor Thiam. Land Use/Land Cover Dynamics Effects on Urban Heat Islands: A Case Study of Dakar Region. American Journal of Environmental Protection. 2025; 13(1):16-30. doi: 10.12691/env-13-1-3

Abstract

This study aims to analyze the relationship between land use/land cover units and surface temperatures in the Dakar region. Indeed, the concentration of human activities and rapid urbanization have led to an intensification of urban heat islands. This phenomenon influences the city's climate, the rates and distribution of pollutants, the comfort of city dwellers, and the natural elements of cities. Therefore, the effect of urban heat islands is an urban data to be taken into consideration in the design, development and management of the city to create a healthier and more viable environment for the well-being of city dwellers. It is in this context that we initiated a study based on the analysis of land use/land cover dynamics over the period 1986-2023 integrating satellite data and Landsat images. To do this, we first calculated indices such as the surface temperature index (LST), the vegetation index (NDVI), and the built-up area index (NDBI), to quantify the impact of land use/land cover changes on heat islands; we then integrated an urban-rural gradient analysis to assess the variation of environmental parameters according to the distance from urban to rural areas. This provides an in-depth understanding of environmental dynamics and interactions between green spaces and built-up areas.

Keywords:
Land use/Land cover dynamics land surface temperatures climatic hazards NDBI NDVI Dakar

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 12

References:

[1]  Oke, T.R., Johnson, G.T., Steyn, D.G. and Watson, I.D (1991). Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Bound.-Layer Meteorol 56, 339–358.
 
[2]  Lin, P., Lau, S.S.Y., Qin, H. and Gou, Z (2017). Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 168, 48–60.
 
[3]  Alobaydi, D., Bakarman, M.A. and Obeidat, B (2016). The Impact of Urban Form Configuration on the Urban Heat Island: The Case Study of Baghdad, Iraq. Procedia Eng., ICSDEC 2016 – Integrating Data Science, Construction and Sustainability 145, 820–827.
 
[4]  Rosenzweig, C., Solecki, W.., Parshall, L., Chopping, M. and Pope, G (2005). Characterizing the urban heat island in current and future climates in New Jersey. Glob. Environ. Change Part B Environ. Hazards 6, 51–52.
 
[5]  Hu, Y., White, M. and Ding, W (2016). An Urban Form Experiment on Urban Heat Island Effect in high Density Area. Procedia Eng., Fourth International Conference on Countermeasures to Urban Heat Island, 30-31 May and 1 June 2016 169, 166–174.
 
[6]  Kłysik, K. and Fortuniak, K (1999). Temporal and spatial characteristics of the urban heat island of Łód´z, Poland. Atmos. Environ. 33, 3885–3895.
 
[7]  Lemonsu, A., Viguié, V., Daniel, M. and Masson, V (2015). Vulnerability to heat waves: Impact of urban ex- pansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 14, Part 4, 586–605.
 
[8]  Stone, B. and Rodgers, M.O (2001). Urban form and thermal effiency: how to design of cities influences the urban heat island. J. Am. Plann. Assoc. 67, 186–198.
 
[9]  Lehoczky, A., Sobrino, J., Skokovic, D., and Aguilar, E (2017). The Urban Heat Island Effect in the City of Valencia: A Case Study for Hot Summer Days. Clim. Change Impacts Adapt. Strateg. Urban Environ. Urban Sci. 2017, 1(1), 9, 2-18.
 
[10]  chatz, J. and Kucharik, C.J (2014). Seasonality of the Urban Heat Island Effect in Madison, Wisconsin. J Appl Meteor Clim. 53, 2371–2386.
 
[11]  Li, X-X. and Norford, L (2016). Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban climate 16, 59–74.
 
[12]  Tran, H., Uchihama, D., Ochi, S. and Yasuoka, Y (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth obs. Geoinformation 8, 34–48.
 
[13]  Hassid, S., Santamouris, M., Papanikolaou, N., Linardi, A., Klitsikas, N., Georgakis, C. and Assimakopoulos, D.N (2000). The effect of the Athens heat island on air conditioning load. Energy Build. 32, 131–141.
 
[14]  Li, D. and Bou-Zeid, E (2013). Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Climatol. 52, 2051-2064.
 
[15]  Hidalgo, J., Masson, V. and Gimeno, L (2009). Scaling the Daytime Urban Heat Island and Urban-Breeze Circulation. J Appl Meteor Clim. 49, 889-901.
 
[16]  Pinho, O.S. and Orgaz, M.D.M (2000). The urban heat island in a small city in coastal Portugal. Int J Biometeorol 44, 198–203.
 
[17]  Parmentier, Amélie (2010). Élaboration d'un outil d'aide à la décision pour atténuer le phénomène d'îlots de chaleur en milieu urbain. Mémoire de maîtrise électronique, Montréal, École de technologie supérieure, 84p.
 
[18]  Kim, Y.-H. and Baik, J.J (2002). Maximum Urban Heat Island Intensity in Seoul. J Appl Meteor 41, 651–659.
 
[19]  Chow, W.T.L. and Roth, M (2006). Temporal dynamics of the urban heat island of Singapore. Int J Clim. 26, 2243–2260.
 
[20]  Bornstein, R. and Lin, Q (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos. Environ. 34, 507–516.
 
[21]  Li X., Zhou Y., Asrar GR., Imhoff M. and Li, X (2017). The surface urban heat island response to urban expansion. A panel analysis for the conterminous United States. Sci Total Environ. 2017 Dec 15; 605- 606:426-435.
 
[22]  Hinkel, K.M., Nelson, F.E., Klene, A.E. and Bell, J.H (2003). The urban heat island in winter at barrowalaska. Int. J. Climatol. 23, 1889 – 1905.
 
[23]  Weiqi, Z., Yuguo, Q., Xiaoma; L., Weifeng, L. and Lijian, H (2013). Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecology, 29(1).
 
[24]  Ivajnšiˇc, D., Kaligariˇc, M. and Žiberna, I (2014). Geographically weighted regression of the urban heat island of a small city. Appl. Geogr. 53, 341–353. 24
 
[25]  Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., Zhou, L., Myneni, R.B (2012). Surface Urban Heat Island Across 419 Global Big Cities. Env. Sci Technol 46, 696–703.
 
[26]  Jinlong, Y., Chaohui, Y., Zihao, A., Bo, M., Qian,W., Yingchao, L., Yali, Z., Weiqiang, C., Ling, W., and Yang, S (2023). The Influence of Urban Form on Land Surface Temperature: A Comprehensive Investigation from 2D Urban Land Use and 3D Buildings Journals Land, 12 (9 ), 2-18.
 
[27]  Arnfield,J (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26.
 
[28]  Vasileios,C. D., Anastasia, S., Vasileios,J. G. and George, D (2015). Diachronic land uses changes in semi mountainous areas next to urban and tourist areas. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 4(10), 1-14.
 
[29]  Guifeng,H. and Jianhua, X (2013). Land Surface Phenology and Land Surface Temperature Changes along an Urban–Rural Gradient in Yangtze River Delta, China.Environmental Management, 52(1), 234-49.
 
[30]  Navin, R. and Jonathan, A. F (1999). Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochemical Cycles, 13(4), 997-1027.
 
[31]  Braimoh, A.K. and Vlek, P.L.G (2005). Land-Cover Change Trajectories in Northern Ghana. Environmental Management, 36, 356-373.
 
[32]  Liu, J., Curry, J. A., Rossow, W. B., Key, J. R. and Wang, X (2005). Comparison of surface radiative flux data sets over the Arctic Ocean, J. Geophys. Res., 110, 1-13.
 
[33]  N’guessan, E., Dibi, N.H., Bellan, M.F. and Blasco, F (2006). Pression anthropique sur une réserve forestière en Cote d’Ivoire: Apport de la télédétection. Revue Télédétection, 5, 307-323.
 
[34]  Gbombélé, S., Ernest K.A., Emmanuel, K. K., Tanina, D.S., Sékouba O., Mahaman, B.S., Nagnin,S. and Jean, B (2014). Contribution of remonte sensing to the cartography of land use dynamic evolution in the region des Lacs (Centre de la Côte d'Ivoire),Afrique SCIENCE, 10(3), 146 – 160.
 
[35]  Sharma, R., Chakraborty, A. and Joshi, P.K (2015) .Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environ. Monit. Assess, 187(1), 4206 -7.
 
[36]  Estoque, R.C., Murayama, Y. and Myint, S.W (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ, 577, 349-359.
 
[37]  Ndiaye, M. L.,Traore,V. B., Toure, M. A., Sambou, A., Diaw, A. T and Beye, A. C (2016). Detection and ranking of vulnerable areas to urban flooding using GIS and ASMC (spatial analysis multicriteria): a case study in Dakar, Senegal; International Journal of Advanced Engineering, Management and Science, 2(8), 1270-1277.
 
[38]  Diop, M. and Sagna, P (2012). Vulnérabilité climatique des quartiers de Dakar au Sénégal: Exemple de Nord- Foire-Azur et de Hann-Maristes, Renforcer la resilience au changement climatique des villes: Du diagnostic spatialisé aux mesures d’adaptations (2R2CV), 7 et 8 juillet 2011, Université Paul Verlaine – Mertz, France, Actes du Colloque, 12 p.
 
[39]  Dasylva, S. and Cosandey C (2006).The exploitation of groundwater Quaternary sands for drinking water supply of Dakar offer compromised by inadequate rainfall recharge. Géocarrefour, 80 (4), 349-358.
 
[40]  ANSD, (2013). Situation économique et Sociale régionale, Rapport Avril 2013, 126p.
 
[41]  NDIAYE, M.L (2015) . Détection des changements d’occupation du sol et modélisation géomatique par évaluation multicritère pour la cartographie des zones vulnérables aux inondations dans la région de Dakar/Sénégal. Mémoire de Master, 132p.
 
[42]  Kok, C.T., Hwee, S. L., Mohd, Z.M. and Khiruddin, A (2011). A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery, Environmental Monitoring and Assessment 184(6), 3813-29.
 
[43]  Gyanesh,C. and Brian, M (2003) . Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. Geoscience and Remote Sensing, 41 (11), 2674-2677.
 
[44]  Chander, G., Mishra, N., Helder, D. L., Aaron, D. B., Angal, A., Choi, T. et al (2013). Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration. IEEE Transactions on Geoscience and Remote Sensing, 51, 1267-1281.
 
[45]  Belhadj,H. A (2001). Le fonctionnement actuel et passé de sols du Nord Sahara (cuvette de Ouargla). Approches micromorphologique, géochimique et minéralogique et organisation spatiale 198p.
 
[46]  Mostephaoui,M. et Bensaid, R (2014). Caractérisation des sols gypseux dans les zones arides par télédétection : Cas du sous-bassin versant d’oued Djedi-biskra. Lebanese Science Journal, 15(1), 99-115.
 
[47]  Mamadou, A. S (2009). Mapping of changes of land-cover between 1990 and 2002 in the north of Senegal (Ferlo) from Landsat images. European Journal of Geography https://journals.openedition.org/cybergeo/22707.
 
[48]  Escadafal, R., Girard, M.C. and Courault, D (1989). Munsell Soil Color and Reflectance in the Visible Spectral Bands of Landsat MSS and MT Data. Remote Sensing of Environment, 27, 37-46.
 
[49]  Ndéye,Y.B., Mamadou,L.N., Célestin, H. and Bienvenu,S (2019). Using Remote Sensing Technics for Land Use Land Cover Changes Analyses from 1950s to 2000s in Somone Tropical Coastal Lagoon. American Journal of Remote Sensing, 7 (2), 25-34.
 
[50]  Iman,R., Omar, M.S., Rajan,D.G., Haraldur, O., Manjula, R., Yuji, M.H. Z., and Terence, D.M (2018) .Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan CityTehran (1988–2018). Sustainability 2018, 10 (4433), 2-25.
 
[51]  Sara, A. G., Mahdi,P., and Fatemeh,R (2013) .The Relationship between NDVI and LST in the urban area of Mashhad, Iran. International Conference on Civil EngineeringArchitecture & Urban Sustainable Development, 27(28), 1-7.
 
[52]  Salah, E. B. B., Wael, E. Z., and Khéloufi, B (2011) .Étude diachronique des changements du couvert végétal dans un écosystème montagneux par télédétection spatiale: cas des monts du Tessala (Algérie occidentale), Physio-Géo, 5 (1), 211-225.
 
[53]  Garouani,E.A. et AHARIK,K. (2021) . Apport des images landsat à l’étude de l’évolution de l'occupation du sol dans la plaine de saïss au maroc, pour la période 1987-2018. Revue Française de Photogrammétrie et de Télédétection, 223(1), 173–188.
 
[54]  Aïssatou, S., Mamadou,A.S., Alioune,K. and Marième,D (2018). L’assèchement des lacs littoraux de la grande côte du Senegal: mythe ou réalité? Cas des lacs Thiourour Warouwaye et Wouye de la banlieue de Dakar. Journal of Animal and Plant Sciences, 35 (2), 5623-5638.
 
[55]  Serigne, M. D (2021) . Étude photogrammétrique de l’infrarouge thermique par drone: intérêt pour l’agriculture de précision 3ème Conférence Internationale sur l’Intensification Durable, 23 au 26 novembre 2021, Dakar,Senegal.
 
[56]  Roy, D.P., Wulder, M.A., Loveland, T.R., et al. (2014) Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sensing of Environment, 145, 154-172.