American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: https://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2024, 12(2), 21-30
DOI: 10.12691/env-12-2-2
Open AccessArticle

The Elemental Composition of Valves and Appendages in Seven Ostracod Strains from the Northeastern Yucatan Peninsula, Mexico: Baseline

Miguel Hernández-Pedraza1, Jesús Alvarado-Flores2, , Marcelo Silva-Briano3, Araceli Adabache-Ortiz3 and Roberto Rico-Martínez1,

1Centro de Ciencias Básicas, Departamento de Química Universidad Autónoma de Aguascalientes, Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags

2Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No 39, Mz 29, Sm 64, C.P. 77524, Cancún, Quintana Roo

3Centro de Ciencias Básicas, Departamento de Biología, Universidad Autónoma de Aguascalientes, Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags

Pub. Date: August 01, 2024

Cite this paper:
Miguel Hernández-Pedraza, Jesús Alvarado-Flores, Marcelo Silva-Briano, Araceli Adabache-Ortiz and Roberto Rico-Martínez. The Elemental Composition of Valves and Appendages in Seven Ostracod Strains from the Northeastern Yucatan Peninsula, Mexico: Baseline. American Journal of Environmental Protection. 2024; 12(2):21-30. doi: 10.12691/env-12-2-2

Abstract

The elemental composition of biological structures in ostracods cultured under standard conditions is a biological reference material and a baseline to study bioaccumulation due to exposure to inorganic compounds in laboratory experiments or samples collected from the environment in ostracods. Ostracods are used as paleoclimatic, and paleo-evolutionary study models, and are sentinels of climatic change and anthropogenic pollution. The main goal was to collect ostracods from the Yucatan peninsula and culture them in the laboratory under standard conditions to establish the elemental composition. Seven strains of ostracods of three species Cypridopsis cf. vidua (OF Müller), Diaphanocypris meridiana (Furtos), Heterocypris cf. incongruens (Ramdohr), were collected using a Wisconsin-type plankton net of 54 µm of mesh opening. We use EPA medium (NaHCO3, CaSO4•H2O, MgSO4•7H2O, and KCl) pH 7.5, and a hardness range of 80-100 CaCO3 mg L-1 to culture the ostracods, which were kept in a bioclimatic chamber with 25 + 2 oC and a photoperiod of 16:8 h light: darkness. Ostracods were fed commercial lettuce Lactuca sativa. A two-month acclimation period was enforced after which ostracod specimens were identified to genera and fixed with 5% formaldehyde. These samples were processed and photographed with the Scanning Electron Microscope with which the elemental analysis using X-ray diffraction was performed in valves and appendages. Our results indicate that most of the elemental Ca are in the valves (41% of total dry weight) when compared to appendages (4%). A total of twelve elements were found in valves and appendages: Al, Br, Ca, Cd, Cl, Cr, Cu, Mg, Na, O, and Si. Ostracods are excellent bioindicators of inorganic elements for the study of environmental contamination.

Keywords:
Bioaccumulation Environmental Toxicology Exploratory Strategies Metal Toxicity Zooplankton

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bauer-Gottwein P., Gondwe R.N.B., Charvet G., Marín E.L., Rebolledo-Vieyra M. and Merediz-Alonso G., 2011. Reseña: El acuífero kárstico de la Península de Yucatán, México. Hidrogeol. J., 19(13), 507-524.
 
[2]  Mendoza-Olea I.J., Leal-Bautista R.M., Cejudo E., Cervantes Uc J.M., Rodríguez-Fuentes N. y Acosta-González G., 2022. Contamination by microplastics in the karstic aquifer of the Yucatan península. Ecosistemas y Recursos Agropecuarios. 9(3), 1-12.
 
[3]  Schmitter-Soto J.J., Escobar-Briones E., Alcocer J., Suárez-Morales E., Elías-Gutiérrez M. and Marín L.E., 2002. “Los cenotes de la Península de Yucatán”. In: De la Lanza-Espino G. and García-Calderón J.L., (Comps.). Lagos y Presas de México. AGT. México, pp. 337-381.
 
[4]  Torrescano-Valle N. and Islebe G.A., 2015. Holocene paleoecology, climate history and human influence in the southwestern Yucatan Peninsula. Rev. Palaeobot. Palynol., 217, 1-8.
 
[5]  Oliva R.S. and Fernández-Espinosa J.A., 2007. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem. J., 86, 131-139.
 
[6]  Pacheco-Ávila J., Cabrera-Sansores A., Barcelo-Quintal M., Alcocer-Can L. and Pacheco-Perera M., 2011. Chapter: Environmental study on Cadmium in groundwater in Yucatan. Hexagon Series on Human and Environmental Security and Peace, 7(0), p. 509.
 
[7]  Sánchez-Sánchez J.A., Álvarez-Legorreta T., Pacheco-Ávila G.J., González-Herrera R.A. and Carrillo-Bribiezca L., 2015. Hydrogeochemical characterization of groundwater in the south of the State of Quintana Roo, Mexico. Revista Mexicana de Ciencias Geológicas. 32(1), 62-76.
 
[8]  Van Lavieren H., Metcalfe C., Drouillard K., Sale P., Gold B. G., Reid R., and Vermeulen L., 2011. Reforzando la Gestión de Contaminación Costera en la Región Gran Caribe. 64 Instituto de Pesca del Golfo y el Caribe. 1-11.
 
[9]  Pérez-Yañez D., 2020. Bioaccumulation of cadmium and lead in four groups of zooplankton from the northeast of Quintana Roo. Master thesis. Centro de Investigación Científica de Yucatán AC. Cancun, Mexico. 1-93.
 
[10]  Alvarado-Flores J., Andrade-canto S.B., Caballero-Vázquez J.A., and Almazán-Becerril A., 2019. X-ray microanalysis of northeastern Quintana Roo aquatic biota, Mexico: evidence of hazard metals presence. Lat. Am. J. Aquat. Res., 47(4), 654-664.
 
[11]  Cohuo S., Macario-González L., Pérez L. and Schwalb A. 2017. Overview of neotropical-caribbean freshwater ostracode fauna (Crustacea, Ostracoda): identifying areas of endemism and assessing biogeographical affinities. Hydrobiol. J., 786, 5-21.
 
[12]  Pokorny V., Haq B.U., and Boersma A., 1978. Ostracodes. Introduction to Marine Micropaleontology. Elsevier, Amsterdam, 109, 149.
 
[13]  Laprida C. and Ballent S.C., 2007. Los invertebrados fósiles. Tomo II. editorial. Fundación de Historia “Felix Azara” Facultad de Ciencias Naturales y Museo. 599-624.
 
[14]  Horne D.J., Cohen A., and Martens K., 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. Geophysical Union Geophysical Monograph Series. Washington DC American., 131, 5-36.
 
[15]  Mesquita-Joanes F., Smith A.J., and Viehberg F., 2012. The ecology of Ostracoda across levels of biological organization from individual to ecosystems: a review of recent developments and future potential. Dev. Quat. Sci.,17, 15-35.
 
[16]  Martens K., Horne D.J., Collecting and Processing Living, Non-Marine Ostracods, 2016. Journal of Crustacean Biology, 36, 6, 1: 849–854.
 
[17]  Martens K., Schôn I., Meisch C. and Horne D.J., 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiol., 595, 185-193.
 
[18]  Yassini F. and Jones B.G., 1995. Recent Foraminifera and Ostracoda from estaurine and shelf environments on the south -eastern coast of Australia. University of Wollongong Press, Wollongong.
 
[19]  Holmes J.A., 2001. Ostracoda. In: Smol J., P. Birks H.J.B. and Last W.M., Eds., Tracking enviromental change using lake sediments, zoological indicators. Kluwer Academic Publishers, Dordrecht., 4,125-152.
 
[20]  Schwalb A., Burns S.J., Cusminsky G.C., Kelts K. and Markgraf V., 2002. Assemblage diversity and isotopic signals of modern ostracods and host waters from Patagonia, Argentina. Palaeogeogr. Palaeoclimatolo. Palaeoecolo., 187, 323-339.
 
[21]  Mezquita F., Roca J.R., Reed J.M. and Wansard G., 2005. Quantifying species-environmental relationship in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeogr. Palaeoclimatolo. Palaeoecolo., 225, 93-117.
 
[22]  Macario-González L., Cohuo S., Elías-Gutiérrez M., Vences M., Pérez L., Schwalb A. 2018. Integrative taxonomy of freshwater ostracodes (Crustacea: Ostracoda) of the Yucatán Peninsula, implications for paleoenvironmental reconstructions in the northern Neotropical region, Zoologischer Anzeiger, 275: 20-36.
 
[23]  Chial B., Persoone G., 2002. Cyst-Based Toxicity Tests XII—Development of a Short Chronic Sediment Toxicity Test with the Ostracod Crustacean Heterocypris incongruens: Selection of Test Parameters. Environ Toxico, 17 (6): 528-532.
 
[24]  Cohuo S., Macario-González L., Pérez L., Sylvestre F., Paillés C., Curtis J.H., Kutterolf S., Wojewódka M., Zawisza E., Szeroczynska K., Schwalb A., 2018. Climate ultrastructure and aquatic community response to Heinrich Stadials (HS5a-HS1) in the continental northern Neotropics. Quaternary Science Reviews 197; 75-91.
 
[25]  Griffith H.I. and Holmes J.A., 2000. Non-marine ostracods and Quaternary palaeoenvironments. Technical, Guide 8. Quat. Res. Association., London, 188.
 
[26]  Nagler C., Geist J. and Matzke-Karasz R., 2014. Revision of the genus Tanycypris Ostracoda, Cypricercinae) with the description of Tanycypris alfonsin. sp., and a genus identification key. Zootaxa. 4, 401-424.
 
[27]  USEPA. 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms Fourth Edition. https:// www.epa.gov/ sites/ default/files/ 2015-08/ documents/ short-term-chronic- freshwater-wet-manual_2002.pdf.
 
[28]  Hernández-Pedraza M., Caballero-Vázquez J.A., Peniche-Pérez J.C., Pérez-Legaspi I.A., Casas-Beltran D.A. and Alvarado-Flores J., 2020. Toxicity and hazards of biodegradable and nonbiodegradable sunscreens to aquatic life of Quintana Roo, Mexico. Sustain J. MDPI., 12, 3270.
 
[29]  Sigee D.C., Krivtsov V. and Bellinger E.G., 1998. Elemental concentrations, correlations, and ratios in micro-populations of Ceratium hirundinella (Pyrrhophyta): and X-ray microanalytical study. Eur. J. Phyco., 33,155-164.
 
[30]  Newbury D.E. and Ritchie N.W., 2013. Is scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) quantitative? Scanning, 35(3),141-168.
 
[31]  Alvarado-Flores J. and Rico-Martínez R., 2017. Bioconcentration of lead and x-ray microanalysis with SEM in the freshwater rotifer Lecane quadridentata (Rotifera: Monogonta). Pol. J. Environ. Stud., 26, 1-4.
 
[32]  Rumney B., Morgan S.R., Mosselmans J. F.W., Malik F.T., Holden S.J., Parker A.R., White N., Lewis P.N., Albon J. and Meek K.M., 2022. Characterisation of carapace composition in developing and adult ostracods (Skogsbergia lerneri) and it is potential for biomaterials. Mar. Bio., 169, 78.
 
[33]  Branson O., Redfern S.A.T., Elmore A.C., Read E., Valencia S. and Elderfield H., 2018. The distribution and coordination of trace elements in Krithe ostracods and their implications for paleothermometry. Geochim. Cosmochim. Acta., 236, 230-239.
 
[34]  Gussone N. and Greifelt T., 2019. Incorporation of Ca isotopes in carapaxes of marine ostracods. Chem. Geol., 510, 130-139.
 
[35]  Fassbinder K., 1912. Contributions to the knowledge of freshwater ostracods. Zool. Jahrb., 32, 533-576.
 
[36]  Kesling R.V., 1949. The morphology of ostracod molt stages. University of Illinois at Urbana-Champaign.
 
[37]  Turpen J.J. and Angell R.R., 1971. Aspects of molting and calcification in the ostracod Heterocypris. Biol bull. Rev., 140(2), 331-338.
 
[38]  Van Morkhoven F. P., 1963. Post Paleozoic Ostracoda: Their Morphology, Taxonomy, and Economic Use. Elsevier Publishing Co., 1-478 pp.
 
[39]  Hardie L.A. and Eugster H.P., 1970. The evolution of closed-basin brines. Mineralogical Society of America (MSA)., 253-273.
 
[40]  Engstrom D. and Nelson S., 1991. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota USA; Palaeogeogr. Palaeoclimatolo. Palaeoecolo., 83, 295 -312.
 
[41]  Decrouy L., 2009. Environmental and biological controls on the geochemistry (δ18O, δ13C, Mg/Ca, and Sr/Ca) of living ostracods from lake Geneva. Doctoral thesis. Faculté des Géosciences et de l’Environnement, Université de Lausanne. Université de Lausanne. 113 p.
 
[42]  Ruiz F., Abad M., Bodergat M., Carbonel P., Rodríguez-Lázaro J., González-Regalado M.L., Toscano A., García, E.X. and Prenda J., 2013. Freshwater ostracods as environmental tracers. Int. J. Environ. Sci. Technol, 10, 1115-1128.