American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: https://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2022, 10(2), 83-90
DOI: 10.12691/env-10-2-5
Open AccessSpecial Issue

Dynamic Adsorption and Desorption of CO2 from Binary Mixtures of CH4 and C3H8 on X Type Zeolites

Charly Mve Mfoumou1, , Pradel Tonda-Mikiela1, Francis Ngoye1, Thomas Belin2 and Samuel Mignard2

1Laboratoire de Chimie des Milieux et des Matériaux Inorganiques (LC2MI), URCHI / Université des Sciences et Techniques de Masuku (USTM), BP : 943 Franceville-Gabon

2Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRS / Université de Poitiers, 4 Rue Michel Brunet, 86022 Poitiers Cedex, France

Pub. Date: October 24, 2022

Cite this paper:
Charly Mve Mfoumou, Pradel Tonda-Mikiela, Francis Ngoye, Thomas Belin and Samuel Mignard. Dynamic Adsorption and Desorption of CO2 from Binary Mixtures of CH4 and C3H8 on X Type Zeolites. American Journal of Environmental Protection. 2022; 10(2):83-90. doi: 10.12691/env-10-2-5

Abstract

Dynamic adsorption and desorption of carbon dioxide (CO2) from binary gas mixtures (CO2/CH4 and CO2/C3H8) was carried out on BaX and NaX zeolites in order to study the influence of methane and propane on the CO2 adsorption capacities and on the preferential adsorption sites of CO2. The adsorption proprieties of CH4 and C3H8 molecules on the adsorbents were also evaluated. This study enabled to conclude that methane has no affinity with NaX and BaX zeolites in our experimental conditions. On the other hand, whatever the adsorbent studied, the results show favorable adsorption sites to trapping of propane. The adsorption capacities of propane at saturation on NaX and BaX zeolites are 0.035 and 0.075 mmol g-1 respectively. However, BaX zeolite is the adsorbent which presents more affinity for propane with the strongest propane/zeolite interactions. The study of CO2 adsorption in presence CH4 and C3H8 on the NaX zeolite indicates a decrease of the CO2/cation interactions and of adsorbed CO2 amounts at saturation. The capacities loss are about of 17% and 30% when carbon dioxide adsorption is carried out in binary mixture CO2/CH4 and CO2/C3H8 respectively. In addition, a loss of preferential adsorption sites of carbon dioxide between 443 - 483 K is also observable in the presence of CH4 on NaX zeolite. However on BaX zeolite, the presence of CH4 and C3H8 improves the accumulation of CO2 in the porosity. The capacities of CO2 adsorption are improved about of 18% whatever the gas mixture studied. Moreover, contrary to NaX zeolite, a conservation of preferential adsorption sites of CO2 on BaX zeolite in the temperature range studied (295 - 623 K) is visible. It seems that the presence of methane and propane doesn’t affect the adsorption proprieties of carbon dioxide on BaX zeolite in our experimental conditions.

Keywords:
dynamic adsorption Zeolite X binary gas mixture Carbon dioxide (CO2) adsorption / desorption Methane (CH4) Propane (C3H8)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC), Synthèse du rapport AR6 du GIEC, publié le 09/08/2021.
 
[2]  A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications – A review, Energy, 35 (2010) 2610-2628.
 
[3]  S. Akerboom, S. Waldmann, A. Mukherjee, C. Agaton, M. Sanders and G. Jan Kramer, Different This Time? The Prospects of CCS in the Netherlands in the 2020s, Frontiers in Energy Research, May 2021 | Volume 9 | Article 644796.
 
[4]  A. Awadallah-F, F. Hillman, S. A. Al-Muhtaseb, H. K. Jeong, Adsorption of Carbon Dioxide, Methane, and Nitrogen Gases onto ZIF Compounds with Zinc, Cobalt, and Zinc/Cobalt Metal Centers, Journal of Nanomaterials, vol. 2019, Article ID 6130152, 11 pages, 2019.
 
[5]  P-H. Huang, J-W Jhan, Y-M. Cheng, H-H. Cheng, Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide, The Scientific World Journal, vol. 2014, Article ID 937867, 8 pages, 2014.
 
[6]  P. Saisuwansiri, P. Worathanakul, A Study of CO2 Thermodynamic Adsorption and Desorption with Bi-Metal Loading on Zeolite Y, Materials Today: Proceedings, Volume 17, Part 4, 2019, Pages 1458-1465,
 
[7]  I. Domínguez, J. Pawlesa, A. Zukal, J. Čejka, Ferrierite and MCM-22 for the CO2 adsorption, Surface Science and Catalysis, Volume 174, Part A, 2008, Pages 603-606.
 
[8]  R. Girimonte, B. Formisani, F. Testa, Adsorption of CO2 on a confined fluidized bed of pelletized 13X zeolite, Powder Technology, Volume 311, 2017, Pages 9-17.
 
[9]  C. Coelho, A. S. Oliveira, M. F. R. Pereira, O. C. Nunes, J. Hazard. Mater. B 138 (2006) 343.
 
[10]  T. Belin, C. Mve Mfoumou, S. Mignard, Y. Pouilloux, Study of physisorbed carbon dioxide on zeolites modified by addition of oxides or acetate impregnation, Microporous and Mesoporous Materials, 182 (2013) 109-116.
 
[11]  H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa, Micropor. Mesopor. Mat. 113 (2008) 343.
 
[12]  L. Jian-Rong, M. Yuguang, M. C. McCarthy, J. Sculley, J. Yu, H. K. Jeong, P. B. Balbuena, Z. Hong-Cai, Coordin. Chem. Rev. 255 (2011) 1791.
 
[13]  H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa, Micropor. Mesopor. Mat. 113 (2008) 343.
 
[14]  A. Zukal, C. O. Arean, M. R. Delgado, P. Nachtigall, A. Pulido, J. Mayerova, J. Cejka, Micropor. Mesopor. Mat. 146 (2011) 97.
 
[15]  S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2 (2009) 796.
 
[16]  D. Bonnefant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Sci. Techno. Adv. Mater. 9 (2008) 13007.
 
[17]  G. Calleja, J. Pau, J. A. Calles, J. Chem. Eng. 43 (1998) 994.
 
[18]  J. Dunne, A. L. Myers, Chem. Eng. Sci. 49 (1994) 2941.
 
[19]  J. A. Dunne, M. Rao, S. Sircar, R. J. Gorte, A. L. Myers, Langmuir 12 (1996) 5896.
 
[20]  Shang, Jin and Hanif, Aamir and Li, Gang and Xiao, Gongkui and Liu, Jefferson Zhe and Xiao, Penny and Webley, Paul A., Separation of CO2 and CH4 by Pressure Swing Adsorption Using a Molecular Trapdoor Chabazite Adsorbent for Natural Gas Purification, Ind. Eng. Chem. Res, 2020, 59, 16, 7857-7865.
 
[21]  Delgado, José A. and Águeda, V. I. and Uguina, M. A. and Sotelo, J. L. and Brea, P. and Grande, Carlos A., Adsorption and Diffusion of H2, CO, CH4, and CO2 in BPL Activated Carbon and 13X Zeolite: Evaluation of Performance in Pressure Swing Adsorption Hydrogen Purification by Simulation, Ind. Eng. Chem. Res. 2014, 53, 40, 15414-15426.
 
[22]  Cavenati, Simone and Grande, Carlos A. and Rodrigues, Alírio E., Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures, J. Chem. Eng. Data 2004, 49, 4, 1095-1101.
 
[23]  Chue, K. T. and Kim, J. N. and Yoo, Y. J. and Cho, S. H. and Yang, R. T., Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption, Ind. Eng. Chem. Res. 1995, 34, 2, 591-598.
 
[24]  J-J. Kim, S-H. Hong, D. Park, K. Chung, C-H. Lee, Separation of propane and propylene by desorbent swing adsorption using zeolite 13X and carbon dioxide, Chemical Engineering Journal, Vol. 410, 2021, 128276.
 
[25]  H. Moradi, H. Azizpour, H. Bahmanyar, M. Emamian, Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite, Chinese Journal of Chemical Engineering, Volume 43, 2022, Pages 70-76.
 
[26]  M. Jaschik, M. Tanczyk, J. Jaschik, A. Janusz-Cygan, Data concerning adsorption equilibria of carbon dioxide, nitrogen and oxygen over a zeolite molecular sieve 13X for the modelling of carbon dioxide capture from gaseous mixtures by adsorptive processes, Data in Brief, Volume 30, 2020, 105638.
 
[27]  M. C. Campo, A. M. Ribeiro, A. F.P. Ferreira, J. C. Santos, C. Lutz, J. M. Loureiro, A. E. Rodrigues, Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite, Fuel Processing Technology, Volume 143, 2016, Pages 185-194.
 
[28]  C.Mve Mfoumou, S. Mignard, T. Belin, The preferential adsorption sites of H2O on adsorption sites of CO2 at low temperature onto NaX and BaX zeolites, Adsorption Science & Technology, 36 (2018) 1246-1259.
 
[29]  V. R. Mollo-Varillas, F. Bougie, M. C. Iliuta, Selective adsorption of water vapor in the presence of carbon dioxide on hydrophilic zeolites at high temperatures, Separation and Purification Technology, Volume 282, Part B, 2022, 120008.
 
[30]  S. Brunauer, P.H. Emmett, E.J. Teller, J. Am. Chem. Soc. 60 (1938) 309.
 
[31]  B.C. Lippens, J.H. De Boer, J. Catal. 4 (1965) 319.
 
[32]  J.H. De Boer, B.C. Lippens, B.G. Lisen, B.C.P. Broekhoff, A. Van Den Heuvel, T.J. Osinga, J. Colloid Interface Sci. 21 (1966) 405.
 
[33]  J. Lynch, F. Raatz, P. Dufresne, Zeolites 7 (1987) 333.
 
[34]  S. Parinyakit and P. Worathanakul, Static and Dynamic Simulation of Single and Binary Component Adsorption of CO2 and CH4 on Fixed Bed Using Molecular Sieve of Zeolite 4A, Processes (2021), 9, 1250.