Biomedicine and Biotechnology
ISSN (Print): 2378-5527 ISSN (Online): 2378-5535 Website: https://www.sciepub.com/journal/bb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Biomedicine and Biotechnology. 2018, 6(1), 1-7
DOI: 10.12691/bb-6-1-1
Open AccessArticle

Molecular Modelling of a Thermostable Glycoside Hydrolase from Caldivirga maquilingensis and Its Substrate Docking Mechanism for Galactooligosaccharides Synthesis

Rebaone Letsididi1, 2, Kekgabile S. Letsididi1, Tao Zhang1, 3, Bo Jiang1, 3 and Wanmeng Mu1, 3,

1State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China

2National Food Technology Research Centre, Private Bag 008, Kanye, Botswana

3Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China

Pub. Date: March 19, 2018

Cite this paper:
Rebaone Letsididi, Kekgabile S. Letsididi, Tao Zhang, Bo Jiang and Wanmeng Mu. Molecular Modelling of a Thermostable Glycoside Hydrolase from Caldivirga maquilingensis and Its Substrate Docking Mechanism for Galactooligosaccharides Synthesis. Biomedicine and Biotechnology. 2018; 6(1):1-7. doi: 10.12691/bb-6-1-1

Abstract

Glycoside hydrolases (GHs) are very important enzymes that can catalyze the breakdown of the glycosidic bonds between carbohydrates and non-carbohydrates to synthesize GOS prebiotic sugars and hydrolyze lactose in the dairy industry. GOS can stimulate the growth of gut microbiota to have beneficial health effects in the host. The current work investigated molecular modelling and lactose substrate docking of a thermostable GH family 1 from Caldivirga maquilingensis strain IC-167 and determined its mechanism for GOS synthesis. The 3D model structure obtained from the Swiss model analysis tool revealed that GH 1 from Caldivirga maquilingensis was a tetramer with a catalytic pocket at the center of each monomer. The overall quality of the model was 93%. When lactose was docked in the catalytic site using AutoDock Vina software, the catalytic amino acid residues were identified to be Glu 387 and Glu 209 which acted as nucleophile and acid/base residues respectively. Other amino acid residues like His 153, Gln 19, Glu 432, Ala 266, Asn 267, Ser 268 and Trp 433 were also found to be surrounding the catalytic site and playing an essential role in ligand binding and recognition of the lactose substrate for GOS synthesis. These findings offer an understanding of how enzyme protein structure determines catalytic specificity, which serves as new knowledge basis to engineer GH 1 from C. maquilingensis for the biosynthesis of GOS with a broad or narrow degree of polymerization range.

Keywords:
molecular modeling docking glycoside hydrolase thermostable galacto-oligosaccharides Caldivirga maquilingensis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M. & Hassan, F. A. Prebiotics as functional foods: A review, Journal of Functional Foods. 5, 1542-1553, 2013.
 
[2]  Gänzle, M. G. Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose, International Dairy Journal. 22, 116-122, 2012.
 
[3]  Intanon, M., Arreola, S. L., Pham, N. H., Kneifel, W., Haltrich, D. & Nguyen, T. H. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk, FEMS microbiology letters. 353, 89-97, 2014.
 
[4]  Sangwan, V., Tomar, S. K., Singh, R. R., Singh, A. K. & Ali, B. Galactooligosaccharides: novel components of designer foods, Journal of food science. 76, R103-11, 2011.
 
[5]  Diez-Municio, M., Herrero, M., Olano, A. & Moreno, F. J. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases, Microbial biotechnology. 7, 315-31, 2014.
 
[6]  Otieno, D. O. Synthesis of β-Galactooligosaccharides from Lactose Using Microbial β-Galactosidases, Comprehensive Reviews in Food Science and Food Safety. 9, 471-482, 2010.
 
[7]  Nath, A., Verasztó, B., Basak, S., Koris, A., Kovács, Z. & Vatai, G. Synthesis of Lactose-Derived Nutraceuticals from Dairy Waste Whey-a Review, Food and Bioprocess Technology. 9, 16-48, 2015.
 
[8]  Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O. & Plou, F. J. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk, Food Chem. 145, 388-394, 2014.
 
[9]  Marana, S. R. Molecular basis of substrate specificity in family 1 glycoside hydrolases, IUBMB life. 58, 63-73, 2006.
 
[10]  Moracci, M., Cabaldo, L., Ciaramella, M. & Rossi, M. Identification of two glutamic acid residues essential for catalysis in the b-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus, Protein Engineering. 9, 1191-1195, 1996.
 
[11]  Torres, D. P. M., Gonçalves, M. d. P. F., Teixeira, J. A. & Rodrigues, L. R. Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics, Comprehensive Reviews in Food Science and Food Safety. 9, 438-454, 2010.
 
[12]  Park, A. R. & Oh, D. K. Galacto-oligosaccharide production using microbial beta-galactosidase: current state and perspectives, Appl Microbiol Biotechnol. 85, 1279-86, 2010.
 
[13]  Duarte, P. M., Goncalves, M. P., Teixeira, J. A. & Rodrigues, L. R. Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics, Compre Rev Food Sci Food Safety. 9, 438-454, 2010.
 
[14]  Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E. & Gras, S. L. Recent advances refining galactooligosaccharide production from lactose, Food Chemistry. 121, 307-318, 2010.
 
[15]  Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M. A., Madhusudhan, M. S., Mirkovic, N. & Sali, A. Protein structure modeling for structural genomics, Nat Struct Biol 7, 986-990, 2000.
 
[16]  Henrissat, B. & Davies, G. Structural and sequence-based classification of glycoside hydrolases Curr Opin Struct Biol. 7, 637-644, 1997.
 
[17]  Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases Structure. 3, 853-859, 1995.
 
[18]  Letsididi, R., Hassanin, H. A., Koko, M. Y., Ndayishimiye, J. B., Zhang, T., Jiang, B., Stressler, T., Fischer, L. & Mu, W. (2016) Characterization of a thermostable glycoside hydrolase (CMbg0408) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167, J Sci Food Agric. 97: 2132-2140, 2017.
 
[19]  Sánchez, R. & Šali, A. “Advances in comparative protein-structure modelling” Current opinion in structural biology. 7, 206-214, 1997.
 
[20]  Maksimainen, M. M., Lampio, A., Mertanen, M., Turunen, O. & Rouvinen, J. The crystal structure of acidic beta-galactosidase from Aspergillus oryzae, International journal of biological macromolecules. 60, 109-15, 2013.
 
[21]  Aguilar, C. F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M. & Pearl, L. H. Crystal Structure of the b-Glycosidase from the Hyperthermophilic Archeon Sulfolobus solfataricus: Resilience as a Key Factor in Thermostability, J Mol Biol 271, 789-802, 1997.
 
[22]  Meng, X. Y., Zhang, H. X., Mezei, M. & Cui, M. Molecular docking: A powerful approach for structure-based drug discovery Current Computer-Aided Drug Design. 7, 146-157, 2011.
 
[23]  Yang, J., Wang, Q., Zhou, Y., Li, J., Gao, R. & Guo, Z. Engineering T. naphthophila β-glucosidase for enhanced synthesis of galactooligosaccharides by site-directed mutagenesis, Biochemical Engineering Journal. 127, 1-8, 2017.
 
[24]  Wu, Y., Yuan, S., Chen, S., Wu, D., Chen, J. & Wu, J. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus beta-galactosidase, Food Chem. 138, 1588-95, 2013.
 
[25]  Brás, N. F., Fernandes, P. A. & Ramos, M. J. QM/MM studies on the β-galactosidase catalytic mechanism: hydrolysis and transglycosylation reactions, J Chem Theory Comput 6, 421-433, 2010.
 
[26]  Armenta, S., Moreno-Mendieta, S., Sanchez-Cuapio, Z., Sanchez, S. & Rodriguez-Sanoja, R. Advances in molecular engineering of carbohydrate-binding modules, Proteins. 85, 1602-1617, 2017.