Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: https://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2013, 1(4), 103-119
DOI: 10.12691/amp-1-4-3
Open AccessReview Article

Introduction of Derivatives and Integrals of Fractional Order and Its Applications

Mehdi Delkhosh1,

1Islamic Azad University, Bardaskan Branch, Department of Mathematics, Bardaskan, Iran

Pub. Date: October 27, 2013

Cite this paper:
Mehdi Delkhosh. Introduction of Derivatives and Integrals of Fractional Order and Its Applications. Applied Mathematics and Physics. 2013; 1(4):103-119. doi: 10.12691/amp-1-4-3

Abstract

Fractional calculus is a branch of classical mathematics, which deals with the generalization of operations of differentiation and integration to fractional order. Such a generalization is not merely a mathematical curiosity but has found applications in various fields of physical sciences. In this paper, we review the definitions and properties of fractional derivatives and integrals, and we express the prove some of them.

Keywords:
fractional calculus fractional derivatives fractional integrals derivative of fractional order integral of fractional order

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Parsian H., Special Functions and its Applications, Bu-Ali Sina University, Iran, 1379.
 
[2]  Abel N.H.; Solution de quelques a l’aide d’integrales defines; Ocuvers Completes; Vol. 1; Grondahl, Christiania; Norway; 1881.
 
[3]  Arvet P., Enn T., Numerical solution of nonlinear fractional differential equations by spline collocation methods, Journal of Computational and Applied Mathematics, 255, p.216-230, 2014.
 
[4]  Leung, A.Y.T., Zhongjin G., Yang, H.X., Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators, Communications in Nonlinear Science and Numerical Simulation, 18(10),p.2900-2915, 2013.
 
[5]  Brenke W.C.; An Application of Able’s Integral equation; Amer. Math. Monthly; Vol. 29; PP. 58-60; 1992.
 
[6]  Camko S.; The Multimensional Fractional Integrodifferentiation and The Grunwald-Letnikov approach to Fractional Calculus;proceedings of the International Conference on ractional Calculus and Its Applications; College of Engineering; Nihon university; Tokyo; pp. 221-225; May-june 1989.
 
[7]  Camko S., Marichev O., and Kilbos A.; Fractional Integrals and Drivatives and Some of their Applications; Science and Technica; Minsk; 1987 (in Russian).
 
[8]  Churchill R.V.; Modern Operational Mathematics in Engineering; Mc-Graw-Hill; New York; 1994.
 
[9]  Courant R. and John F.; Introduction to Calculus and Analysis; John Wiley; New York; Vol. 1; 1965.
 
[10]  Falconer K.; Fractal Geometry - Mathematical Foundations and Applications; John Wiley; New York; Second Edition, 2003.
 
[11]  Gemant A.; A method of analyzing experimental result obtained from elastoviscous bodies; Physics 7; PP. 311-317; 1936.
 
[12]  Heaviside O.; Electrical Papers; Macmillan; London; 1892.
 
[13]  Hilfer R.; Applications of Fractional calculus in Physics; World Scientific; Singapore; 2000.
 
[14]  Kiryakova V.; A long standing conjecture failed? In: P. Rusev, I. Dimovski, V. Kiryakova; Transform Method and Special Functions; Varna’96 (Proc. 3rd International Workshop); Institute of Mathematics and Informatics; Bulgarian Academy of Sciences; Sofia; PP. 579-588;1998.
 
[15]  Kolwankar K.M.; Studies of Fractal Structures and Processes Using Methods of Fractional Calculus; http://arxiv.org/abs/chao-dyn/9811008.
 
[16]  Kolwankar K.M., and Gangal A.D.; In the proceeding of the Conference “Fractals in Enginering”; Archanon; 1997.
 
[17]  Kolwankar K.M., and Gangal A.D.; Local Fractional Derivatives and Fractal functions of several variables; http://arxiv.org/pdf/physics/9801010.
 
[18]  Lacroix S.F.; Traite du calcul differential et du calcul integral. 2nd ed.; Courcier; Paris; pp. 409-410; 1819.
 
[19]  Laurent H.; Sur le calcul des derives a indices quelconques; Nouv. Ann. Math.; Vol. 3; PP. 240-252; 1884.
 
[20]  Lavoie J.L., Osler T.J., and Tremblay R.; Fractional Derivatives and Special functions; SIAM Rev.; Vol. 18; PP. 240-268; 1976.
 
[21]  Leibniz G.W.; Letter from Hanover; Germany; to G.F.A. L’Hopital, September 30; 1695; in Mathematische Schriften, 1849; reprinted 1962, Olms verlag; Hidesheim; Germany; Vol. 2, PP. 301-302; 1965.
 
[22]  Mainardi F.; Considerations on fractional calculus: Interpretations and Applications, In: P. Rusev, I. Dimovski, V. Kiryakova; Transform Method and Special Functions; Varna’96 (Proc. 3rd International Workshop); Institute of Mathematics and Informatics; Bulgarian Academy of Sci.; Sofia; PP. 579-588;1998.
 
[23]  Mc Bride A. and Roach G.; Fractional Calculus Research Notes in mathematics; Vol. 138; Pitman; Boston-London-Melbourne; 1985.
 
[24]  Miller K.S.; Linear Differential Equation in Engineering Problem; Prentice Hall; New York; 1953.
 
[25]  Miller K.S. and Ross B.; an Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons, Inc.; New York; 1993.
 
[26]  Nishimoto K.; Fractional Calculus and Its Applications; Nihon university; Koriyama; 1990.
 
[27]  Oldham K.B., and Spanier J.; The Fractional calculus; Academic Press; New York; 1974.
 
[28]  Osler T.J.; SIAM Journal; Math. Anal.; Vol.2; P. 37; 1971.
 
[29]  Poldlubny I.; Geometric and Physical Inteerpretation of Fractional Integration and Fractional Differentiation; Fractional Calculus and Applied Analysis Journal; Vol. 5; PP. 367-386; 2002
 
[30]  Welland G.V.; Proc. Amer. Math. Soc.; Vol. 19; P. 135; 1968.
 
[31]  Ross B.; editor, proceeding of the International Conference on Fractionl Calculus and Its Applications; University of New Haven; West Haven; Conn., June 1974; Springer-verlag; New York; 1975.
 
[32]  Ross B.; In Fractional Calculus and Its Applications: Lecture Notes in Mathematics; Springer-Verlag; New York; Vol. 457; P. 1; 1975.
 
[33]  Ross B.; Brief Note: The Reimann-liouville Transformation; J. Math. Modeling; Vol. 2; PP. 233-236; 1981.