[1] | Arnold L., “Stochastic Differential Equations; Theory and Applications”, John Wiley and Sons, 1974. |
|
[2] | Balakrishnan A. V., “Applications of Mathematics: Applied Functional Analysis”, 3rd edition, Springer-Verlag, New York, 1976. |
|
[3] | Bierens H. J., “Introduction to Hilbert Spaces”, Pennsylvania State University, June 24 2007. |
|
[4] | Chen M., “Approximate Solutions of Operator Equations”, By World Scientific Publishing, Co. Pte. Ltd., 1997. |
|
[5] | Coculescu D. and Nikeghbali A., “Filtrations”, 2000 Mathematics Subject Classification arXiv:0712.0622v1 [math.PR] , 2007. |
|
[6] | Conway, John B., “A course in functional analysis”, 2' ed., Springer-Verlag, New York, 1990. |
|
[7] | Diagana, T., “An Introduction to Classical and p-ADIC Theory of Linear Operators and Applications”, Nova Science Publishers, 2006. |
|
[8] | Dhage. B.C.,Multi-valued mappings and fixed points II,Tamkang J.Math.37(2006). 27-46. |
|
[9] | Erwin, K., “Introduction Functional Analysis with Application”, By John Wiley and Sons, 1978. |
|
[10] | Einsiedler M. and Ward T., “Functional Analysis Notes”, Draft July 2, 2012. |
|
[11] | Grippenberg, G. and Norros I., “On The Prediction of Fractional Brownian Motion”, Journal of Applied Probability, Vol. 33, No. 2, PP: 400-410, 1996. |
|
[12] | Gani J., Heyde C.C., Jagers P. and Kurtz T.G., “Probability and its Applications”, Springer-Verlag London Limited, 2008. |
|
[13] | Kumlin Peter, “A Note on Fixed Point Theory”, TMA 401 / MAN 670 Functional Analysis 2003 /2004. |
|
[14] | KressRainer, “Linear Integral Equations”, 2’ed, Springer Science Business Media New York, 1999. |
|
[15] | Kisil Vladimir. V “Introduction to Functional Analysis”, Courses on Functional Analysis at School of Mathematics of University of Leeds, December 2014 . |
|
[16] | Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006). Theory and application of fractional differential Equations. Elsevier, Amsterdam. |
|
[17] | Lasikcka, I., “Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations”, J. Deferential Equation, 47, pp. 246-272, 1983. |
|
[18] | Li K., “Stochastic Delay Fractional Evolution Equations Driven by Fractional Brownian Motion”, Mathematical Method in the Applied Sciences, 2014. |
|
[19] | Mishura Y. S., “Stochastic Calculus for Fractional Brownian Motion and Related Processes”, Lect, Notes in Math., 1929, Springer, 2008. |
|
[20] | Madsen Henrik, “ito integrals”, Aalborg university, Denmark, 2006. |
|
[21] | Nualart D., “Fractional Brownian motion: stochastic calculus and Applications”, Proceedings of the International Congress of Mathematicians, Madrid, Spain, European Mathematical Society, 2006. |
|
[22] | Tudor Ciprian A., “Ito Formula for the Infinite –Dimensional Fractional Brownian Motion”, J. Math. Kyoto Univ. (JMKYAZ), Vo. 45, No.3, PP: 531-546, 2005. |
|