Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: https://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2014, 2(3), 103-111
DOI: 10.12691/amp-2-3-6
Open AccessResearch Article

Challenging Photon Mass: from Scalar Quantum Electrodynamics to String Theory

Lukasz Andrzej Glinka1,

1B.M. Birla Science Centre, Hyderabad, India

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Challenging Photon Mass: from Scalar Quantum Electrodynamics to String Theory. Applied Mathematics and Physics. 2014; 2(3):103-111. doi: 10.12691/amp-2-3-6

Abstract

A massless photon, originated already through the Maxwell theory of electromagnetism, is one of the basic paradigms of modern physics, ideally supported throughout both the quantum electrodynamics and the Higgs mechanism of spontaneous symmetry breaking which lays the foundations of the Standard Model of elementary particles and fundamental interactions. Nevertheless, the physical interpretation of the optical experimental data, such like observations of total internal reflection of the beam shift in the Goos–H¨anchen effect, concludes a photon mass. Is, therefore, light diversified onto two independent species - gauge photons and optical photons? Can such a state of affairs be consistently described through a unique theoretical model? In this paper, two models of a photon mass, arising from the scalar quantum electrodynamics with the Higgs potential, are discussed. The first scenario leads to a neutral scalar mass estimable throughout the experimental limits on a photon mass. In the modified mechanism, a neutral scalar mass in not affected throughout a photon mass and is determinable through the experimental data, while a massless dilaton is present and a non-kinetic massive vector field effectively results in the string theory of non-interacting invariant both a free photon and a neutral scalar, and the Aharonov–Bohm effect is considered. The Markov hypothesis on maximality of the Planck mass is applied.

Keywords:
scalar quantum electrodynamics Higgs potential scalar field photon mass dilaton non-kinetic vector field Aharonov–Bohm effect Markov hypothesis invariant particles string theory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  H.J. Muller-Kirsten. Electrodynamics: An Introduction Including Quan-tum E_ects (World Scienti_c, 2004).
 
[2]  F.W. Hehl, Yu.N. Obukhov. Foundations of Classical Electrodynamics. Charge, Flux and Metric (Birkhauser, 2003).
 
[3]  D.J. Gri_ths. Introduction to Electrodynamics (Prentice-Hall, 1999).
 
[4]  J.D. Jackson. Classical Electrodynamics (John Wiley & Sons, 1999).
 
[5]  W. Greiner. Classical Electrodynamics (Springer, 1998).
 
[6]  J. Schwinger, L.L. DeRaad, K. Milton, W.-Y. Tsai. Classical Electrody-namics (Perseus Books, 1998).
 
[7]  H.C. Ohanian. Classical Electrodynamics (Allyn and Bacon, 1988).
 
[8]  M. Schwartz. Principles of Electrodynamics (Dover, 1987).
 
[9]  R.S. Ingarden, A. Jamio lkowski. Classical Electrodynamics (Elsevier, 1985).
 
[10]  A.O. Barut. Electrodynamics and Classical Theory of Fields and Parti-cles (Dover, 1980).
 
[11]  L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. Course of Theoretical Physics, Volume 2 (Butterworth-Heinemann, 1975).
 
[12]  S.R. de Groot, L.G. Suttorp. Foundations of Electrodynamics (North Holland Publishing Company, 1972).
 
[13]  A. Sommerfeld. Electrodynamics. Lectures on Theoretical Physics, Vol. III (Academic Press, 1952).
 
[14]  L. Silberstein. Elements of the Electromagnetic Theory of Light (Longmans, 1918).
 
[15]  J.C. Maxwell. A Treatise on Electricity and Magnetism (Clarendon Press, 1873).
 
[16]  E. Zeidler. Quantum Field Theory II: Quantum Electrodynamics. A Bridge between Mathematicians and Physicists (Springer, 2008).
 
[17]  D.M. Gingrich. Practical Quantum Electrodynamics (CRC Press, 2006).
 
[18]  O. Steinmann. Perturbative Quantum Electrodynamics and Axiomatic Field Theory (Springer, 2000).
 
[19]  C. Cohen-Tonnoudji, J. Dupont-Roc, G. Grynberg. Photons and Atoms. Introduction to Quantum Electrodynamics (John Wiley & Sons, 1997).
 
[20]  W. Greiner, J. Reinhardt. Quantum Electrodynamics (Springer, 1992).
 
[21]  W. Greiner, B. Muller, J. Rafelski. Quantum Electrodynamics of Strong Fields. With an Introduction into Modern Relativistic Quantum Mechan- ics (Springer, 1985).
 
[22]  N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Fields (John Wiley & Sons, 1980).
 
[23]  16 I. Bia lynicki-Birula, Z. Bia lynicka-Birula. Quantum Electrodynamics (Pergamon Press, 1975).
 
[24]  A.I. Akhiezer, V.B. Berestetskii. Quantum Electrodynamics (John Wiley & Sons, 1965).
 
[25]  E.A. Power. Introductory Quantum Electrodynamics (Longmans, 1964).
 
[26]  R.P. Feynman. Quantum Electrodynamics (W.A. Benjamin, 1961).
 
[27]  G. Grynberg, A. Apsect, C. Fabre. Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University Press, 2010).
 
[28]  J.R. Garrison, R.Y. Chiao. Quantum Optics (Oxford University Press, 2008).
 
[29]  I.R. Kenyon. The Light Fantastic: A Modern Introduction to Classicaland Quantum Optics (Oxford University Press, 2008).
 
[30]  D.F. Walls, G.J. Milburn. Quantum Optics (Springer, 2008).
 
[31]  R.J. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, 2007).
 
[32]  P. Meystre, M. Sargent. Elements of Quantum Optics (Springer, 2007).
 
[33]  V. Vogel, D.-G. Welsch. Quantum Optics (Wiley-VCH, 2006).
 
[34]  A.K. Prykarpatsky, U. Taneri, N.N. Bogolubov. Quantum Field Theory with Application to Quantum Nonlinear Optics (World Scienti_c, 2002).
 
[35]  M.O. Scully, M.S. Zubairy. Quantum Optics (Cambridge University Press, 2001).
 
[36]  W.P. Schleich. Quantum Optics in Phase Space (Wiley-VCH, 2001).
 
[37]  R. Loudon. The Quantum Theory of Light (Oxford University Press, 1973).
 
[38]  J.R. Klauder, E.C.G. Sudarshan. Fundamentals of Quantum Optics (W.A. Benjamin, 1968).
 
[39]  F. Scheck. Classical Field Theory: On Electrodynamics, Non-Abelian Gauge Theories and Gravitation (Springer, 2012).
 
[40]  M. Guidry. Gauge Field Theories: An Introduction with Applications (Wiley-VCH, 2004).
 
[41]  I.J.R. Aitchinson, A.J.G. Hey. Gauge Theories in Particle Physics. Vols. I and II (Institute of Physics Publishing, 2003-2004).
 
[42]  V. Rubakov. Classical Theory of Gauge Fields (Princeton University Press, 2002).
 
[43]  S. Pokorski. Gauge Field Theories (Cambridge University Press, 2000).
 
[44]  P.H. Frampton. Gauge Field Theories (John Wiley & Sons, 2000).
 
[45]  D. Bailin, A. Love. Introduction to Gauge Field Theory (Institute of Physics Publishing, 1993).
 
[46]  17 T.-P. Cheng, L.-F. Li. Gauge Theory of Elementary Particle Physics (Clarendon Press, 1988).
 
[47]  I.J.R. Aitchinson. An Informal Introduction to Gauge Field Theories (Cambridge University Press, 1984).
 
[48]  K. Huang. Quarks, Leptons and Gauge Fields (World Scientific, 1982).
 
[49]  N.P. Konopleva, V.N. Popov. Gauge Fields (Harwood Academic Publishers, 1981).
 
[50]  Y. Nambu. Phys. Rev. 117, 648 (1960).
 
[51]  P.W. Higgs. Phys. Rev. Lett. 13(16), 508 (1964).
 
[52]  F. Englert, R. Brout. Phys. Rev. Lett. 13 (9), 321 (1964).
 
[53]  L. de Broglie. Ann. de Phys. 3, 22 (1925).
 
[54]  Phil. Mag. 47, 446 (1924).
 
[55]  C.R. Acad. Sci. 177, 506, 548, 630 (1923).
 
[56]  J. Phys. 3, 422 (1922).
 
[57]  P. Ehrenfest. Phys. Z. 13, 317 (1912).
 
[58]  D.F. Comstock. Phys. Rev. 30, 267 (1910).
 
[59]  J. Kunz. Am. J. Sci. 30, 313 (1910).
 
[60]  R.C. Tolman. Phys. Rev. 30, 291 (1910), 31, 26 (1910).
 
[61]  W. Ritz. Ann. Chim. Phys. 13, 145 (1908).
 
[62]  Ar. Sc. Phys. Nat. 16, 260 (1908).
 
[63]  A. Proca, J. Phys. Rad. 7 (9), 61 (1938), 7 (8), 23 (1937), 7 (7), 347 (1936).
 
[64]  C.R. Acad. Sci. 203, 70 (1936), 202, 1366 (1936).
 
[65]  L. de Broglie. Nouvelles recherches sur la lumi_ere (Hermann, 1936).
 
[66]  Une nouvelle th_eorie de la Lumi_ere, la M_echanique ondulatoire du photon (Hermann, 1940-1942).
 
[67]  Th_eorie g_en_erale des particules _a Spin (Gauthier-Villars, 1943).
 
[68]  M_echanique ondulatoire et la th_eorie quantique des champs (GV, 1949).
 
[69]  La Thermodynamique de la particule isol_ee (ou Thermodynamique cach_ee des particules) (GV, 1964).
 
[70]  Ondes _electromag- n_etiques et Photons (GV, 1968).
 
[71]  J. Phys. Rad. 11, 481 (1950).
 
[72]  J. Phys. 20, 963 (1959).
 
[73]  Int. J. Theor. Phys. 1, 1 (1968).
 
[74]  Ann. Inst. H. Poincar_e 1, 1 (1964), 9, 89 (1968).
 
[75]  J. Phys. 20, 963 (1959), 28, 481 (1967).
 
[76]  C.R. Acad. Sci. 257, 1822 (1963), 264, 1041 (1967), 198, 445 (1934).
 
[77]  Found. Phys. 1(1), 5 (1970).
 
[78]  Ann. Fond. L. de Broglie 12, 1 (1987).
 
[79]  F. Goos, M. Hanchen. Ann. Phys. (Leipzig) 1, 333 (1947).
 
[80]  A. Mazet, C. Imbert, S. Huard. C.R. Acad. Sci. B 273, 592 (1971).
 
[81]  L. De Broglie, J.-P. Vigier. Phys. Rev. Lett. 28 (1), 1001 (1972).
 
[82]  G. J. Troup, J.L.A. Francey, R.G. Turner, A. Tirkel. Phys. Rev. Lett. 28, 1540 (1972). 18.
 
[83]  M.C. Diamantini, G. Guarnaccia, C.A. Trugenberger. J. Phys. A 47, 092001 (2014).
 
[84]  F. Logiurato. J. Mod. Phys. 5, 1 (2014).
 
[85]  Gior. Fis. 52(4), 261 (2011).
 
[86]  J. de Woul, E. Langmann. J. Stat. Phys. 154, 877 (2014).
 
[87]  L.A. Glinka, NeuroQuantology 10, 11 (2012).
 
[88]  J.R. Mureika, R.B. Mann. Mod. Phys. Lett. A 26, 171 (2011).
 
[89]  A. Accioly, J. Helayel-Neto, E. Scatena. Phys. Rev. D 82, 065026 (2010).
 
[90]  Int. J. Mod. Phys. D 19, 2393 (2010).
 
[91]  A.S. Goldhaber, M.M. Nieto. Rev. Mod. Phys. 82, 939 (2010), 43, 277 (1971).
 
[92]  Sci. Am. 234(5), 86 (1976).
 
[93]  Phys. Rev. Lett. 91, 149101 (2003), 26, 1390 (1971), 21, 567 (1968).
 
[94]  D.D. Ryutov. Phys. Rev. Lett. 103, 201803 (2009).
 
[95]  Plasma Phys. Control. Fusion 49, B429 (2007), 39, A73 (1997).
 
[96]  U. Kulshreshtha. Mod. Phys. Lett. A 22, 2993 (2008).
 
[97]  B.G. Sidharth. Ann. Fond. L. de Broglie 33, 199 (2008).
 
[98]  F. Wilczek. The Lightness of Being: Mass, Ether, and the Uni_cation of Forces (Basic Books, 2008).
 
[99]  E. Adelberger, G. Dvali, A. Gruzinov. Phys. Rev. Lett. 98, 010402 (2007).
 
[100]  A. Dolgov, D.N. Pelliccia. Phys. Lett. B 650, 97 (2007).
 
[101]  G. Spavieri, M. Rodriguez. Phys. Rev. A 75, 052113 (2007).
 
[102]  B. Altschul. Phys. Rev. 73, 036005 (2006).
 
[103]  H. Kleinert. Europh. Lett. 74, 889 (2006).
 
[104]  Lett. Nuo. Cim. 35, 405 (1982).
 
[105]  L.B. Okun. Acta Phys. Pol. B 37, 565 (2006).
 
[106]  Phys. Today 42, 31 (1989).
 
[107]  A. Vainshtein. Surv. High En. Phys. 20, 5 (2006).
 
[108]  P. Weinberger. Phil. Mag. Lett. 86(7), 405 (2005).
 
[109]  L.-C. Tu, J. Luo, G.T. Gillies. Rep. Prog. Phys. 68, 77 (2005).
 
[110]  M. Fullekrug, Phys. Rev. Lett. 93, 043901 (2004).
 
[111]  T. Prokopec, E. Puchwein. JCAP 0404, 007 (2004).
 
[112]  T. Prokopec, R.P. Woodard. Am. J. Phys. 72, 60 (2004).
 
[113]  J.Q. Shen, F. Zhuang. J. Optics A: Pure Appl. Optics 6, 239 (2004).
 
[114]  L.-C. Tu, J. Luo. Metrologia 41 S136 (2004).
 
[115]  M. Land, Found. Phys. 33, 1157 (2003).
 
[116]  J. Luo, L.-C. Tu, Z.-K. Hu, E.-J. Luan. Phys. Rev. Lett. 90, 081801 (2003).
 
[117]  B.-X. Sun, X.-F. Lu, P.-N. Shen, E.-G. Zhao. Mod. Phys. Lett. A 18, 1485 (2003).
 
[118]  T. Borne, G. Lochak, H. Stumpf. Nonperturbative Quantum Field Theory and the Structure of Matter (Kluwer Academic Publishers, 2002).
 
[119]  19 R. Dick, D.M.E. McArthur. Phys. Lett. B 535, 295 (2002).
 
[120]  C. Kohler. Class. Quant. Grav. 19, 3323 (2002).
 
[121]  T. Prokopec, O. Tornkvist, R. Woodard. Phys. Rev. Lett. 89, 101301 (2002).
 
[122]  R. Lakes. Phys. Rev. Lett. 80(9), 1826 (1998).
 
[123]  O. Costa de Beauregard, Phys. Essays 10(3), 492, 646 (1997).
 
[124]  S. Je_reys, S. Roy, J.-P. Vigier, G. Hunter (Eds). The Present Status of the Quantum Theory of Light (Springer, 1997).
 
[125]  H.A. M_unera, Apeiron 4, 77 (1997).
 
[126]  J.-P. Vigier. Phys. Lett. A 234, 75 (1997).
 
[127]  Apeiron 4, 71 (1997).
 
[128]  A.Yu. Ignatiev, G.C. Joshi. Mod. Phys. Lett. A 11, 2735 (1996).
 
[129]  P. Mathews, V. Ravindran. Int. J. Mod. Phys. A 11, 2783 (1996).
 
[130]  T.W. Barrett, D.M. Grimes (Eds). Advanced Electromagnetism (World Scienti_c, 1995).
 
[131]  G. Lochak, Ann. Fond. L. de Broglie 20, 111 (1995).
 
[132]  Int. J. Theor. Phys. 24, 1019 (1985).
 
[133]  E. Fischbach, H. Kloor, R.A. Langel, A.T.Y. Liu, M. Peredo. Phys. Rev. Lett. 73, 514 (1994).
 
[134]  E. Prugovecki, Found. Phys. 24, 335 (1994).
 
[135]  M.C. Combourieux, J.-P. Vigier. Phys. Lett. A 175, 277 (1993).
 
[136]  V.A. Kosteleck_y, M.M. Nieto. Phys. Lett. B 317, 223 (1993).
 
[137]  S. Mohanty, S.N. Nayak, S. Sahu. Phys. Rev. D 47, 2172 (1993).
 
[138]  M.M. Nieto, in D.B. Cline (Ed). Gamma Ray: Neutrino Cosmology and Planck Scale Physics (World Scienti_c, 1993), pp. 291-296.
 
[139]  V.A. Kosteleck_y, S. Samuel. Phys. Rev. Lett. 66, 1811 (1991).
 
[140]  B. Rosenstein, A. Kovner. Int. J. Mod. Phys. A 6, 3559 (1991).
 
[141]  D.G. Boulware, S. Deser. Phys. Rev. Lett. 63, 2319 (1989).
 
[142]  L.P. Fulcher, Phys. Rev. A 33, 759 (1986).
 
[143]  G. Barton, N. Dombey. Annals Phys. 162, 231 (1985).
 
[144]  Nature 311, 336 (1984).
 
[145]  J.J. Ryan, F. Accetta, R.H. Austin. Phys. Rev. D 32, 802 (1985).
 
[146]  J.D. Barrow, R.R. Burman. Nature 307, 14-15 (1984).
 
[147]  R.E. Crandall. Am. J. Phys. 51, 698 (1983).
 
[148]  H. Georgi, P. Ginsparg, S.L. Glashow. Nature (Lond.) 306, 765 (1983).
 
[149]  L.F. Abbott, M.B. Gavela. Nature 299, 187 (1982).
 
[150]  J.R. Primack, M.A. Sher. Nature 299, 187 (1982), 288, 680 (1980).
 
[151]  N. Dombey. Nature 288, 643 (1980).
 
[152]  J.C. Byrne, Astroph. Space Sci. 46, 115 (1977).
 
[153]  E. MacKinnon. Am. J. Phys. 45, 872 (1977), 44, 1047 (1976).
 
[154]  G.V. Chibisov. Usp. Fiz. Nauk 119, 551 (1976).
 
[155]  R. Schlegel. Am. J. Phys. 45, 871 (1976).
 
[156]  20L. Davis, A.S. Goldhaber, M.M. Nieto. Phys. Rev. Lett. 35, 1402 (1975).
 
[157]  O. Steinmann. Ann. Inst. H. Poincar_e 23(1), 61 (1975).
 
[158]  S. Deser. Ann. Inst. H. Poincar_e 16(1), 79 (1972).
 
[159]  G. 't Hooft, M. Veltman. Nucl. Phys. B 50, 318 (1972).
 
[160]  G. 't Hooft. Nucl. Phys. B 35, 16 (1971).
 
[161]  N.M. Kroll. Phys. Rev. Lett. 26, 1395 (1971), 27, 340 (1971).
 
[162]  D. Park, E.R. Williams. Phys. Rev. Lett. 26, 1393, 1651 (1971).
 
[163]  E.R. Williams, J.E. Faller, H.A. Hill. Phys. Rev. Lett. 26, 721 (1971).
 
[164]  H. Van Dam, M. Veltman. Nucl. Phys. B 22, 397 (1970).
 
[165]  G. Feinberg. Science 166, 879 (1969).
 
[166]  I.Yu. Kobzarev, L.B. Okun. Usp. Fiz. Nauk 95, 131 (1968).
 
[167]  V.I. Ogievetsky, I.V. Polubarinov. Yad. Fiz. 4, 216 (1966).
 
[168]  W.G.V. Rosser. An Introduction to the Theory of Relativity (Butterworths, 1964).
 
[169]  P.W. Anderson, Phys. Rev. 130, 439 (1963).
 
[170]  M. Gintsburg. Astron. Zh. 40, 703 (1963).
 
[171]  D.G. Boulware, W. Gilbert. Phys. Rev. 126, 1563 (1962).
 
[172]  J. Schwinger. Phys. Rev. 128, 2425 (1962), 125, 397 (1962).
 
[173]  N. Kemmer. Helv. Phys. Acta 33, 829 (1960).
 
[174]  Y. Yamaguchi. Prog. Theor. Phys. Supp. 11, 1 (1959).
 
[175]  E.C.G. Stueckelberg. Helv. Phys. Acta 30, 209 (1957).
 
[176]  L. Bass, Nuo. Cim. 3, 1204 (1956).
 
[177]  L. Bass, E. Schrodinger. Proc. R. Soc. London A 232, 1 (1955).
 
[178]  R.J. Glauber. Prog. Theor. Phys. 9, 295 (1953).
 
[179]  H. Umezawa. Prog. Theor. Phys. 7, 551 (1952).
 
[180]  F. Coester. Phys. Rev. 83, 798 (1951).
 
[181]  G. Petiau, J. Phys. Rad. 10, 215 (1949).
 
[182]  E. Schrodinger. Proc. R. Ir. Ac. A 49, 43, 135 (1943), 47, 1 (1941).
 
[183]  W. Pauli. Rev. Mod. Phys. 13, 203 (1941).
 
[184]  H. Yukawa, S. Sakata, M. Taketani. Proc. Phys. Math. Soc. Japan 20, 319 (1938).
 
[185]  H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
 
[186]  A. Bashir, Y. Concha-Sanchez, R. Delbourgo, M.E. Tejeda-Yeomans. Phys. Rev. D 80, 045007 (2009).
 
[187]  S.P. Kim, H.K. Lee. J. Korean Phys. Soc. 54, 2605 (2009).
 
[188]  Phys. Rev. D 76, 125002 (2007).
 
[189]  R.P. Malik, B.P. Mandal. Pramana 72, 805 (2009).
 
[190]  C. Bernicot, J.-Ph. Guillet. JHEP 0801, 059 (2008).
 
[191]  M.N. Chernodub, L. Faddeev, A.J. Niemi. JHEP 0812, 014 (2008).
 
[192]  21 H. Kleinert, B. van den Bossche. Nucl. Phys. B 632, 51 (2002).
 
[193]  D.S. Irvine, M.E. Carrington, G.Kunstatter, D. Pickering. Phys. Rev. D 64, 045015 (2001).
 
[194]  H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (World Scienti_c, 2009).
 
[195]  Gauge Fields in Condensed Matter, Vol. I Superow and Vortex Lines (World Scientific, 1989).
 
[196]  S. Weinberg. The Quantum Theory of Fields. Vol. I Foundations (Cambridge University Press, 1996).
 
[197]  M. Peskin, D. Schroeder. An Introduction to Quantum Field Theory (Westview Press, 1995).
 
[198]  C. Itzykson, J.-B. Zuber. Quantum Field Theory (McGraw-Hill, 1980).
 
[199]  V.L. Ginzburg, L.D. Landau. Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
 
[200]  L.D. Landau. Phys. Z. d. Sow. Union 11, 26 and 129 (1937).
 
[201]  A.A. Abrikosov. Sov. Phys. JETP 5, 1174 (1957).
 
[202]  H.B. Nielsen, P. Olesen. Nucl. Phys. B 61, 45 (1973).
 
[203]  L.A. Glinka. _thereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity (Cambridge International Science Publishing, 2012).
 
[204]  M.A. Markov. Prog. Theor. Phys. Suppl. E 65, 85 (1965).
 
[205]  Sov. Phys. JETP 24, 584 (1967).
 
[206]  Y. Aharonov, D. Bohm. Phys. Rev. 115 (3), 485 (1959).