[1] | K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, 1997. |
|
[2] | R. Kress, Linear integral equations, Springer-Verlag, NewYork, 1999. |
|
[3] | P.K. Kythe, P. Puri, Computational methods for linear integral equations, BirkhauserVerlag, Springer, Boston, 2002. |
|
[4] | L.M. Delves, J.L. Mohamed, Computational methods for integral equations, Cambridge University Press, London, 1985. |
|
[5] | K. Maleknejad, F. Mirzaee, Numerical solution of linear Fredholm integral equations system by rationalized Haar functions method. Int J Comput Math 80 (2003) 1397-405. |
|
[6] | E. Babolian, J. Biazar, and A.R. Vahidi, The decomposition method applied to system of Fredholm integral equations of the second kind, Appl. Math. Comput. 148 (2004) 443-452. |
|
[7] | K. Maleknejad, M. Sharezaee, and H. Khatami, Numerical solution of integral equations system of the second kind by Block-Pulse functions, Appl. Math. Comput. 166 (2005) 15-24. |
|
[8] | K. Maleknejad, M. Shahrezaee, Rung-Kutta method for numerical solution of the system of Volterra integral equation, Appl. Math. Comput., 149 (2004) 399-410. |
|
[9] | J. Pour-Mahamoud, M.Y. Rahimi-Ardabili, and S. Shahmorad, Numerical solution of system of Fredholm integro-differential equations by the Tau method, Appl. Math. Comput. 168 (2005) 465-478. |
|
[10] | K. Ivaz, B.S.Mostahkam, Newton-Tau numerical solution of a system of nonlinear Fredholm integral equations of second kind. Appl. Comput. Math., 5 (2006) 201-208. |
|
[11] | M. Gulsu and M. Sezer, Taylor collocation method for solution of systems of high-order linear Fredholm–Volterra integro-differential equations, Int. J. Comput. Math. 83 (2006) 429-448. |
|
[12] | J. Rashidinia, M. Zarebnia, Convergence of approximate solution of system of Fredholm integral equations. J Math Anal Appl, 333 (2007) 1216-27. |
|
[13] | R.K. Saeed, Homotopy perturbation method for solving system of nonlinear Fredholm integral equations of the second kind. Journal of Applied sciences Research, 10 (2008) 1166-1173. |
|
[14] | M.I.Berenguer, G. Gamez, A.I. Garralda-Guillem, M.Ruiz Galan, M.C. Serrano Perez, Biorthogonal systems for solving Volterra integral equation systems of the second kind. J. Comput. Appl.Math. 235 (2011) 1873-1875. |
|
[15] | H. Almasieh, M. Roodaki, Triangular functions method for the solution of Fredholm integral equations system, Ain Shams Engineering Journal., 3 (2012) 411-416. |
|
[16] | S. Ding, H Yang, Fast multiscale Galerkin methods for solving ill-posed integral equations via a coupled system under general source conditions, J. Math. Anal. Appl. (2013). |
|
[17] | W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the new reproducing kernel method, Applied Mathematics and Computation. 219 (2013) 10225-10230. |
|
[18] | A.P. Anioutine, A.G. Kyurkchan, Application of wavelets technique to the integral equations of the method of auxiliary currents,J. Quant. Spectrosc. Radiat. Transf. 79-80 (2003) 495-508. |
|
[19] | B.A. Lewis, On the numerical solution of Fredholm integral equations of the first kind, J. Inst. Math. Appl. 16 (1973) 207-220. |
|
[20] | C. Sanchez-Avila, Wavelet domain signal deconvolution with singularity-preserving regularization, Math. Comput. Simul. 61 (2003) 165-176. |
|
[21] | A. Boggess, F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Prentice-Hall, 2001. |
|
[22] | F. Khellat, S. A. Yousefi, The linear mother wavelets operational matrix of integration and its application, Journal of Franklin Institute, 343 (2006), 181-190. |
|
[23] | H. Danfu, S. Xufeng, Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets, Applied Mathematics and Computation., 191 (2007), 440-444. |
|
[24] | Z. Abbasa, S. Vahdati, K. A. Atan , N. M. A. Nik Long, Legendre Multi-Wavelets Direct Method for Linear Integro-Differential Equations, Applied Mathematical Sciences, 14 (2009) 693-700. |
|
[25] | F. Khellat, Optimal Control of Linear Time-Delayed Systems by Linear Legendre Multiwavelets, J Optim Theory Appl., 143 (2009) 107-121. |
|
[26] | E.Abdolmaleki, S.A. Edalatpanah, A numerical method for solving systems of Fredholm integral equations by collocation linear Legendre multi-Wavelets, Information Sciences and Computing, (2013), Number 2, Article ID ISC010713, 10 pages. |
|
[27] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer, New York, 1988. |
|