American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Water Resources. 2017, 5(1), 5-12
DOI: 10.12691/ajwr-5-1-2
Open AccessReview Article

Occurrence, Detection and Defluoridation of Fresh Waters

Bhavtosh Sharma1, , Prashant Singh2, Rajendra Dobhal3, V.K. Saini4, Manju Sundriyal1, Shashank Sharma5 and S.K. Khanna1

1Uttarakahnd Science Education & Research Centre (USERC), Dehradun – 248006, Uttarakhand, India

2Department of Chemistry, DAV Post Graduate College, Dehradun – 248001, Uttarakhand, India

3Uttarakhand Council for Science & Technology, Vigyan Dham, Jhajhara, – 248 007, Uttarakhand, India

4School of Environment & Natural Resources (SENR), Doon University, Kedarpur, Dehradun- 248 001, Uttarakhand, India

5Department of Chemistry, JMIETI (Kurukshetra University), Radaur– 135133, Yamuna Nagar, Haryana, India

Pub. Date: January 14, 2017

Cite this paper:
Bhavtosh Sharma, Prashant Singh, Rajendra Dobhal, V.K. Saini, Manju Sundriyal, Shashank Sharma and S.K. Khanna. Occurrence, Detection and Defluoridation of Fresh Waters. American Journal of Water Resources. 2017; 5(1):5-12. doi: 10.12691/ajwr-5-1-2


The fluoride is an essential nutrient for human beings which occur in the surface as well as in groundwater. In surface water, it reaches due to both geogenic and anthropogenic sources but in groundwater, it mainly comes from geogenic sources. Authorities like World Health Organization (WHO), United State Environmental Protection Agency (USEPA), and Bureau of India Standard (BIS) have provided guidelines regarding the concentration of fluoride in drinking water. A higher fluoride concentration in drinking water results in fluorosis. Therefore, the understanding of fluoride occurrence, its detection and removal from drinkable water is the urgent requirement. The chemical behavior of fluoride, the reasons for fluoride concentration in groundwater, the fluoride detection methods, and some case studies on the occurrence of fluoride in fresh water bodies of Uttarakhand are summarized. The effectiveness of different techniques for removal of fluoride from water samples has been reviewed.

fluoride freshwater detection methods Uttarakhand India defluoridation material

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Habuda-Stanić, M.,  Ergović Ravančić, M. and  Flanagan, A. “A Review on Adsorption of Fluoride from Aqueous Solution”, Materials, 7(9). 6317-6366. 2014.
[2]  Fluoride and Fluorides: Environmental Health Criteria 36; World Health Organization (WHO): Geneva, Switzerland, 1984.
[3]  Fluorides-Environmental Health Criteria 227, World Health Organization (WHO), Geneva, Switzerland, 2002.
[4]  Ministry of water Resources (MOWR) GOI, New Delhi. 2016.
[5]  Meenakshi and Maheshwari, R.C., “Fluoride in drinking water and its removal”, J. Hazard Materials, B137. 456-463. 2006.
[6]  Kass, A., Yechieli Gavrieli, Y., Vengosh, A. and Starinsky, A., “The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal aquifer”, J. Hydrol., 1-4. 314-331. 2005.
[7]  Azbar, N. and Turkman, A., “Defluoridation in drinking waters”, Water Sci. Technol., 42, 403-407. 2000.
[8]  Chernet, T., Trafi, Y. and Valles, V., “Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian rift valley”, Water Res., 35. 2819-2832. 2002.
[9]  Agarwal, M., Rai, K., Shrivastav, R. and Dass, S., “Defluoridation of water using amended clay”, J. Cleaner Produc., 11, 439-444. 2003.
[10]  Apambire, W. B., Boyle, D. R. and Michel, F. A., “Geochemistry, genesis and health implications of fluoriferous groundwaters in the upper regions of Ghana”, Environ. Geol., 33, 13-24. 1997.
[11]  Moturi, W.K.N., Tole, M.P. and Davies, T.C., “The contribution of drinking water towards dental fluorosis: a case study of Njoro division, Nakuru district, Kenya”, Environ. Geochem. and Health, 24, 123-130. 2002.
[12]  Hem, J.O., “Study and interpretation of chemical characteristics of natural water”, U. S. Geological Survey Water Supply Paper, p. 1473. 1959.
[13]  Bulusu, K.R. and Pathak, B.N.. “Discussion on water defluoridation with activated alumina”, J. Environ. Eng. Div., 106(2). 466-469. 1980.
[14]  Elrashidi, M.A. and Lindsay, W.L., “Solubility of aluminum fluoride, fluorite and fluoriphogopite minerals in soils”, J. Soil Sci. Soc. Am., 50, 594-598. 1986.
[15]  Shailaja, K. and Johnson, M.E.C., “Fluorides in groundwater and its impact on health”, J. Environ. Biol., 28, 331-332. 2007.
[16]  Bishnoi, M. and Shalu, A., “Potable groundwater quality in some villages of Haryana, India: focus on fluoride”, J. Environ. Biol., 28. 291-294. 2007.
[17]  Edmunds, W.M. and Smedley, P.L., Groundwater geochemistry and health: an overview, in: Appleton, Fuge, McCall (Eds.), Environmental Geochemistry and Health. Geological Society Special Publication, 113, pp. 91-105. 1996.
[18]  Islam, M. and Patel, R.K., “Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency”, Chem. Eng. J., 169. 68-77. 2011.
[19]  Jamodei, A.V., Sapkal, V.S. and Jamode, V.S., “Defluoridation of water using inexpensive adsorbents”, J. Ind. Inst. Sci., 84. 163-171. 2004.
[20]  Gonzales, C., Hotokezaka, H., Karadeniz, E.I., Miyazaki, T., Kobayashi, E. and Darendeliler M.A., “Effects of fluoride intake on orthodontically induced root respiration”, Am. J. Ortho Dentofacial Orthop., 139, 196-205. 2004.
[21]  Nordstrom, D.K. and Jenne, E.A., “Fluorite solubility equilibria in selected geothermal waters”, Geochimica et Cosmochimica Acta, 41, 175-188. 1977.
[22]  Handa, B.K., “Geochemistry and genesis of fluoride- containing ground waters in India”, Groundwater, 13. 275-281. 1975.
[23]  Edmunds, W.M. and Smedley, P.L., 2005. Fluoride in natural waters. In: Selinus, O. (Ed.), Essentials of Medical Geology. Elsevier Academic Press, London, pp. 301-329.
[24]  Reddy, D.V., Nagabhushanam, P., Sukhija, B.S., Reddy, A.G.S. and Smedley, P.L., Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda district, India”, Chemical Geol., 269. 278-289. 2010.
[25]  Deshmukh, A.N., Valadaskar, P.M. and Malpe, D.B., “Fluoride in environment: a review”, Gondwana Geological Magazine, 9, 1-20. 1995.
[26]  Chae, G.T., Yun, S.T., Kwon, M.J., Kim, S.Y. and Mayer, B., “Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater”, Geochem. Journal, 40, 95-102. 2006.
[27]  Mamatha, P. and Rao, S.M., “Geochemistry of fluoride rich groundwater in Kolar and Tumkur districts of Karnataka”, Environ. Earth Sci., 61, 131-142. 2010.
[28]  Banerjee, A., “Groundwater fluoride contamination: A reappraisal”, Geoscience Front.,6(2). 277-284. 2015.
[29]  Brunt, R., Vasak, L. and Griffioen, J., Fluoride in Ground water: Probability of occurrence of excessive concentration on global scale, International Groundwater Resources assessment centre, Report nr. SP 2004-2, 2004, Accessed on web on 17. 11. 2016.
[30]  Bell, M.C. and Ludwig, T.G. The supply of fluoride to man: ingestion from water, in: Fluorides and Human Health, WHO Monograph Series 59, World Health Organization, Geneva. 1970.
[31]  López, V.A., Reyes, B.J.L., Song, S. and Herrera, U.R., “Temperature effect on the zeta potential and fluoride adsorption at the Al2O3/aqueous solution interface”, J. Colloid Interface Sci., 298(1). 1-5. 2006.
[32]  Shortt, W.E. Endemic fluorosis in Nellore District, South India. Ind. Med. Gazette, 72-396. 1937.
[33]  Susheela, A.K., “Epidemiology and Control of Fluorosis in India”, Fluoride, 18(2). 120-21. 1985.
[34]  Emission Regulations – Part II. (1998). New Delhi: Central Pollution Control Board (India). Pp. 18.
[35]  Bureau of Indian Standard (BIS), Drinking water specification, BIS-10500. 2012.
[36]  Guidelines for drinking-water quality. Edn 4, World Health Organization, 2011, accessed on 15 December, 2016.
[37]  Ferreira, H.S., Ferreira, S.L.C., Cervera, M.L. and de la Guardia, M., “Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry”, Spectrochim. Acta,Part B, 64. 597–600. 2009.
[38]  Bosch, M.E., Sanchez, A.J.R., Rojas, F.S. and Ojeda, C.B. “Arsenic and antimony speciation analysis in the environment using hyphenated techniques to inductively coupled plasma mass spectrometry: a review”, Int. J. Environ Waste Manage., 5. 4-63. 2010.
[39]  Torok, P. and Zˇemberyova, M. “Utilization of W/Mg(NO3)2 modifiers for the direct determination of As and Sb in soils, sewage sludge and sediments by solid sampling electrothermal atomic absorption spectrometry”, Spectrochim Acta, Part B 65, 291-296. 2010.
[40]  Sharma, B. and Tyagi, S. “Simplification of Metal Ion Analysis in Fresh Water Samples by Atomic Absorption Spectroscopy for Laboratory Students”, J. Lab. Chem. Education, 1(3). 54-58. 2013.
[41]  Agrahari, S.K., Kumar, S.D. and Srivastava, A.K., “Development of Carbon paste electrode containing benzo-15-crown-5-for trace determination of the uranyl ion by using a voltametric technique”, J. AOAC Int. 92, 241-247. 2009.
[42]  Santos, V.S., Santos, W.J.R., Kubota, L.T., Tarley, C.R.T., “Speciation of Sb(III) and Sb(V) in meglumine antimoniate pharmaceutical formulations by PSA using carbon nanotube electrode”, J. Pharm. Biomed. Anal. 50, 151-157. 2009.
[43]  Tanguy, V., Waeles, M., Vandenhecke, J. and Riso, R.D., “Determination of ultra-trace Sb(III) in seawater by stripping chronopotentiometry (SCP) with a mercury film electrode in the presence of copper”, Talanta, 81, 614-620. 2010.
[44]  Sanghavi, B.J. and Srivastava, A.K., “Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode”, Electrochim Acta, 55, 8638-8648. 2010.
[45]  Shahrokhian, S. and Ghalkhani, M. (). Glassy carbon electrodes modifed with a flm of nanodiamond–graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine . Electrochim Acta, 55, 3621-3627. 2010.
[46]  Guide Manual: Water & Waste Analysis, Central Pollution Control Board (CPCB), accessed on 14.12.2016.
[47]  Singh, P., Dobhal, R., Seth, R., Aswal, R.S., Singh, R., Uniyal D.P. and Sharma B. “Spatial and Temporal Variations in Surface Water Quality of Pithoragarh District, Uttarakhand (India)”, Anal. Chem. Lett., 5(5). 267-290. 2015.
[48]  Tyagi, S., Singh, P., Dobhal. R. and Uniyal, D.P., Sharma, B., Singh, R., “Spatial and temporal variations in quality of drinking water sources of Dehradun district in India”, Int. J. Environ. Technol. Manage., 18(5/6). 375-399. 2015.
[49]  Tyagi, S., Singh, P., Sharma, B. and Singh, R., “Assessment of Water Quality for Drinking Purpose in District Pauri of Uttarakhand, India”, Appl. Ecol. Environ. Sci., 2(4). 94-99.2014.
[50]  Neal, M., Neal, C., Wickham, H. and Harman, S., “Determination of bromide, chloride, fluoride, nitrate and sulphate by ion chromatography: comparison of methodologies for rainfall, cloud water and river waters at the Plynlimon catchments of mid-Wales”, Hydrol. Earth Syst. Sci., 11(1). 294-300. 2007.
[51]  Sundriyal, M. and Sharma, B., “Status of Biodiversity in Central Himalaya”, Appl. Ecol. Environ. Sci., 4(2). 37-43. 2016.
[52]  Sharma, B., “Sustainable Drinking Water Resources in Difficult Topography of Hilly State Uttarakhand, India”, Ameri. J. Water Res., 4(1). 16-21. 2016.
[53]  “Water Resources Management & Treatment Technologies”, edited byBhavtosh Sharma, OP Nautiyal, Durgesh Pant, Published by USERC, Deptt. of Science & Technology, Govt. of Uttarakhand. 2016.
[54]  Sharma, B., Savera, K.K., Kausik, S., Saini, P., Bhadula, S., Sharma, V. and Singh, P., “Assessment of Ground Water Quality of Bhagwanpur Industrial Area of Haridwar in Uttarakhand, India”, Applied Ecology and Environmental Sciences, 4(4). 96-101. 2016.
[55]  Engineering Chemistry by Baskar C., Baskar S. and Dhillon R.S., published by Wiley India Pvt. Ltd. 2012.
[56]  Patil, A.R. and Kulkarni, B.M., “Study of ion exchange regime and activated alumina as defluoridation media”, J. Institution of Engineers (India)”, 03.14-16.1989.
[57]  Iyenger, L., Small Community Water Supplies: Technology, People and Partnerships. In: Smet J, van Wijk C (ed). Technologies for fluoride removal. Delft, Netherlands. IRC. Pp. 499-514. 2003.
[58]  Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E. and Singh, P., “Review of fluoride removal from drinking water”, J. Environ Management. 91. 67-77. 2009.
[59]  Tomar, V. and Kumar, D.A, “Critical study on efficiency of different materials for fluoride removal from aqueous media”, Chem. Cent. J. 7. 1-15. 2013.
[60]  Da˛browski, A., “Adsorption from theory to practice”, Advances Colloid Inter. Sci., 93. 135-224. 2001.
[61]  Qiu, H., Lv, L., Pan, B., Zhang, Q., Zhang, W., Zhang, Q., “Critical review in adsorption kinetic models”, J. Zhejiang Univ Sci A, 10(5).716-724. 2009.
[62]  Kumar, S., Gupta, A. and Yadav, J.P., “Fluoride removal by mixtures of activated carbon prepared from Neem (Azadirachta indica) and Kikar (Acacia arabica) leaves”. Ind. J. Chem. Tech, 14. 355-361. 2007.
[63]  Goswami, A. and Purkait, M.K., “The defluoridation of water by acidic alumina”, Chem Eng Res and Des, 90, 2316-2324. 2012.
[64]  Farrah, H., Slavek, J. and Pickering, W.F., “Fluoride interactions with hydrous aluminum oxides and alumina”, Aust. J. Soil Res., 25, 55-69. 1987.
[65]  Tripathy, S.S., Bersillon, J.J. and Gopal, K. “Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina”, Sep. Purif. Technol., 50. 310-317. 2006.
[66]  Ku, Y. and Chiou, H.M., “The adsorption of fluoride ion from aqueous solution by activated alumina”, Water Air Soil Pollut., 133. 349-361. 2002.
[67]  Nawlakhe, W.G., Kulkarni, D.N., Pathak, B.N. and Bulusu, K.R., “Defluoridation of water by Nalgonda technique”, Ind. J. Environ. Health, 17. 26-65. 1975.
[68]  Camacho, L.M., Torres, A., Saha, D. and Deng, S., “Adsorption equilibrium and kinetics of fluoride on sol–gel- derived activated alumina adsorbents”, J. Colloid Interface Sci., 349. 307-313. 2010.
[69]  Malay, K.D. and Salim, A.J., “Comparative study of batch adsorption of fluoride using commercial and natural adsorbent”, Res. J. Chem. Sci. 1. 68-75. 2011.
[70]  Tang, Y., Guan, X., Su, T., Gao, N. and Wang, J., “Fluoride adsorption onto activated alumina: modeling the effects of pH and some competing ions”, Colloids Surf, 337, 33-38. 2009.
[71]  Shimelis, B., Zewge, F. and Chandravanshi, B.S., “Removal of excess fluoride from water by aluminum hydroxide”, Bull. Chem. Soc. Ethiopia, 20. 17-34. 2006.
[72]  Maliyekkal, S.M., Sharma, A.K. and Philip, L., “Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water”, Water Res., 40. 3497-3506. 2006.
[73]  Gadhari, N.S., Sanghavi, B.J., Karna, S.P., Srivastava, A.K., “Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1] and multiwalled carbon nanotubes”, Electrochim Acta, 56, 627-635. 2010.
[74]  Mobin, S.M., Sanghavi, B.J., Srivastava, A.K., Mathur, P. and Lahiri, G.K. “Biomimetic Sensor for Certain Phenols Employing a Copper(II) Complex”, Anal Chem, 82. 5983-5992. 2010.
[75]  Sivasankar, V., Ramachandramoorthy, T. and Darchenc, A., Manganese dioxide improves the efficiency of earthenware in fluoride removal from drinking water. Desalination, 272. 179-186. 2011.
[76]  Shahrokhian, S., Ghalkhani, M., Adeli, M. and Amini, M. K., Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modifcation of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine. Biosens Bioelectron, 24. 3235-3241. 2009.
[77]  Ma, Y., Wang, S.G., Fan, M., Gong, W.X. and Gao, B.Y., “Characteristics and defluoridation performance of granular activated carbon coated with manganese oxides”, J. Hazard. Mater, 168, 1140-1146. 2009.
[78]  Teng, S.X. and Wang, S.G., “Removal of fluoride by hydrous manganese oxidecoated alumina: Performance and mechanism”, J. Hazard. Mater, 168. 1004-1011. 2009.
[79]  Li, Y.H., Wang, S.G., Zhang, X.F., Wei, J.Q., Xu, C.L., Luan, Z.K. and Wu, D. H., “Adsorption of fluoride from water by aligned carbon nanotubes”, Mater. Res. Bull., 38. 469-476. 2003a.
[80]  Li, Y.H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., Wu, D. and Wei, B. “Removal of fluoride from water by carbon nanotube supported alumina”, Environ Technol., 24, 391-398. 2003b.
[81]  Li, Y.H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D. and Wie, B. “Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes”, Chem. Phys. Lett., 322, 1-5. 2001.
[82]  Kasprzyk-Hordern, B., Kondakal, V.V.R., Baker, D.R., “Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry” J. Chromatogr. A., 1217, 4575. 2010.
[83]  Hanumantharao, Y., Kishore, M. and Ravindhranath, K., “Preparation and development of adsorbent carbon from Acacia farnesiana for defluoridation”, Int. J. Plant Anim. Environ. Sci. 1, 209-223. 2011.
[84]  Karthikeyan, G. and Siva Ilango, S., “Fluoride sorption using Morringa Indica-based activated carbon”, Iran. J. Enviton. Health Sci. Eng. 4. 21-28. 2007.
[85]  Hernández-Montoya, V., Ramírez-Montoya, L.A., Bonilla-Petriciolet, A., Montes-Morán, M.A., “Optimizing the removal of fluoride from water using new carbons obtained by modification of nut shell with a calcium solution from egg shell”, Biochem. Eng. J., 62, 1-7. 2012.
[86]  Sivabalan, R., Rengaraj, S., Arabindoo, B. and Murugesan, V., “Fluoride uptake characteristics of activated carbon from agriculture-waste”, J. Sci. Ind. Res., 61, 1039-1045. 2002.
[87]  Mariappan, P., Yegnaraman, V. and Vasudevan, T., “Defluoridation of water using low cost activated carbons”, Ind. J. Environ. Protect., 22, 154-160. 2002.
[88]  Agarwal, M., Rai, K., Shrivastav, R. and Dass, S. “Defluoridation of water using amended clay”, J. Cleaner Produc., 11, 439-444. 2003.
[89]  Tripathy, S.S. and Raichur, A.M., “Abatement of fluoride from water using manganese dioxide-coated activated alumina”, J. Hazard. Mater., 153, 1043-1051. 2008.
[90]  Waghmare, S.S. and Arfin, T., “Fluoride Removal from Water by Aluminium Based Adsorption: A Review”, J. Biol. Chem. Chron., 2(1), 1-11. 2015.
[91]  Khichar, M. and Kumbhat, S., “Defluoridation-A review of water from aluminium and alumina based compound”, Int. J. Chemical Studies, 2(5), 4-11. 2015.
[92]  Sharma, S.K. and Sharma, M.C., “Application of Biological Adsorbent Materials for Removal of Harmful Inorganic Contaminants from Aqueous Media – An Overview”, Current Trends in Technol Sci, 4. 1. 2015.
[93]  Das, N., Pattanaik, P. and Das, R., “Defluoridation of drinking water using activated titanium rich bauxite”, J. Colloid Interface Sci., 292. 1-10. 2005.
[94]  Yang, M., Hashimoto, M.T., Hoshi, N. and Myoga, H., “Fluoride removal in a fixed bed packed with granular calcite”, Water Res., 33, 3395-3402. 1999.
[95]  Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N. and Rayalu, S., “New modified chitosan-based adsorbent for defluoridation of water”, J. Colloid Interface Sci. 332. 280-290. 2009.
[96]  Sujana, M.G., Mishra, A. and Acharya, B.C., “Hydrous ferric oxide doped alginate beads for fluoride removal: Adsorption kinetics and equilibrium studies”, Appl. Surf. Sci. 270. 767-776. 2013.
[97]  Davila-Rodriguez, J.L., Escobar-Barrios, V.A. and Rangel-Mendez, J.R., “Removal of fluoride from drinking water by a chitin-based biocomposite in fixed-bed columns”, J. Fluor. Chem. 140, 99-103. 2012.
[98]  Swain, S.K., Patnaik, T., Patnaik, P.C., Jha, U., Dey, R.K., “Development of new alginate entrapped Fe(III)–Zr(IV) binary mixed oxide for removal of fluoride from water bodies. Chem. Eng. J., 215-216, 763-771. 2013.
[99]  Cengeloglu, Y., Kir, E. and Ersoz, M., “Removal of fluoride from aqueous solution by using red mud”, Sep. Purif. Technol., 28, 81-86. 2002.
[100]  Piekos, R. and Paslawaska, S., “Fluoride uptake characteristic of fly ash”, Fluoride, 32. 14-19. 1999.
[101]  Chaturvedi, A.K., Pathak, K.C. and Singh, V.N., “Fluoride removal from water by adsorption on China clay”, Appl. Clay Sci., 3, 337-346. 1988.
[102]  Kamble, S.P., Jagtap, S., Labhsetwar, N.K., Thakare, D., Godfrey, S., Devotta, S., Rayalu, S.S., “Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan”, Chem. Eng., J. 129. 173-180. 2007.
[103]  Viswanathan, N. and Meenakshi, S., “Development of chitosan supported zirconium(IV) tungstophosphate composite for fluoride removal”, J. Hazard. Mater. 176. 459-465. 2010.
[104]  Mohan, S.V., Ramanaiah, S.V., Rajkumar, B. and Sarma, P.N., “Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra Sp.-102: sorption mechanism elucidation”, J. Hazard Mater., 141. 465-474. 2007.
[105]  Miramontes, P., Bautista-Margulis, R.G. and Perez-Hernandeza, A., “Removal of arsenic and fluoride from drinking water with cake alum and a polymeric anionic flocculent”, Fluoride, 36. 122-128. 2003.
[106]  Sujana, M.G., Soma, G., Vasumathi, N. and Anans, S., “Studies on fluoride adsorption capacities of amorphous Fe/Al mixed hydroxides from aqueous solutions”, J. Fluorine Chem., 130. 749-754. 2009.
[107]  Zhang, Yi., Wang, D., Liu, B., Gao, X., Xu, W., Liang, P. and Xu, Y., “Adsorption of Fluoride from Aqueous Solution Using Low-Cost Bentonite/Chitosan Beads”, AmericanJ. Anal Chem, 4. 48-53. 2013.
[108]  Khatibikamal, V., Torabian, A., Janpoor, F. and Hoshyaripour, G., “Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics”, J. Hazardous Materials, 179 (1-3). 276-280. 2010.
[109]  Waghmare, S.S.and Arfin, T., “Fluoride Removal from Water by various techniques: Review” Int. J. Innovative Sci. Engineering Technol., 2 (9). 560-571. 2015.
[110]  Meenakshi, S. and Viswanathan, N., “Identification of selective ion-exchange resin for fluoride sorption”, J. Colloid Interface Sci., 308. 438-450. 2007.
[111]  Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T. and Tanada, S., “Adsorption of fluoride ions onto carbonaceous materials”, J. Colloid Interface Sci., 275. 35-39. 2004.
[112]  Ramos, R.L., Ovalle-Turrubiartes, J. and Sanchez-Castillo, M.A., “Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon”, Carbon, 37. 609-617. 1999.
[113]  Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N. and Rayalu, S., “New modified chitosan-based adsorbent for defluoridation of water”, J. Colloid Interface Sci. 332. 280-290. 2009.
[114]  Potgeiter, J.H., “An experimental assessment of the efficiency of different defluoridation methods”, Chem, SA 317-318. 1990.
[115]  Piddennavar, R., “Review on defloridation techniques of water”, Int. J. Eng. Sci. 2, 86-94. 2013.
[116]  Maheswari, R.C. and Hoelzel, G., “Potential of membrane separation technology for fluoride removal from underground water”, Proceedings of the Water Environment Federation, 17. 620-636. 2002.
[117]  Bhatnagar, A., Kumar, E. and Sillanpää, M., “Fluoride removal from water by adsorption—A review”, Chem. Eng. J., 171. 811-840. 2011.
[118]  Chakrabortty, S., Roy, M. and Pal, P., “Removal of fluoride from contaminated groundwater by cross flow nanofiltration: Transport modeling and economic evaluation”, Desalination, 313, 115-124. 2013.
[119]  Seadar, J.D. and Heneley, J.E., “The Separation Process Principles”, second ed., NJ: Wiley, pp. 521-523. 2005.
[120]  Bosch, M.E., Sanchez, A.J.R., Rojas, F.S. and Ojeda, C.B., “Arsenic and antimony speciation analysis in the environment using hyphenated techniques to inductively coupled plasma mass spectrometry: a review”, Int. J. Environ Waste Manage., 5. 4-63. 2010.
[121]  Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K. and Vafaei, Z., “Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II)”, J. Hazard. Material, 183. 402-409. 2010.