American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Water Resources. 2014, 2(6), 149-158
DOI: 10.12691/ajwr-2-6-3
Open AccessArticle

Optimization of Retention Time of Microbial Community Structure of Activated Sludge Process

M P. Shah1,

1Industrial Waste Water Research Laboratory Division of Applied & Environmental Microbiology Enviro Technology Limited Gujarat, India

Pub. Date: December 17, 2014

Cite this paper:
M P. Shah. Optimization of Retention Time of Microbial Community Structure of Activated Sludge Process. American Journal of Water Resources. 2014; 2(6):149-158. doi: 10.12691/ajwr-2-6-3


Ammonia Oxidizing Bacteria community composition was analysed using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE), and the identified populations were enumerated by quantitative FISH. Potential nitrification rates were determined in batch tests and the in situ rates were calculated from mass balances of nitrogen in the plants. Increased SRT did not reduce the nitrification activity, but the number per mixed liquor suspended solids nor was community composition of AOB affected. Two dominant AOB populations related to Nitrosomonas europaea and Nitrosomonas oligotropha were identified by FISH, whereas only the latter could be detected by DGGE. The effect of a longer SRT on the activity was probably because of physiological changes in the AOB community rather than a change in community composition.

activated sludge ammonia-oxidizing bacteria denaturing gradient gel electrophoresis fluorescence in situ hybridization nitrification nitrogen removal solids retention time

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Adamczyck, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P.H., Schloter, M., Roslev, P. et al. (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69, 6875-6887.
[2]  Anon (1993) Avprøvning av screeningmetoder for nitrifikationshæmning. Hørsholm, Denmark: Vandkvalitetsinstitutet.
[3]  Belser, L.W. (1979) Population ecology of nitrifying bacteria. Annu Rev Microbiol 33, 309-333.
[4]  Blackburne, R., Yuan, Z.G., Keller, J., 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19 (2), 303-312.
[5]  Daims, H., Nilesen, P.H., Nielsen, J.L., Juretschko, S. and Wagner, M. (2000) Novel Nitrospira-like bacteria as dominant nitrite oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci Technol 41, 85-90.
[6]  Daims, H., Ramsing, N.B., Schleifer, K.-H. and Wagner, M. (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridisation. Appl Environ Microbiol 67, 5810-5818.
[7]  Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G. and Sayler, G.S. (2002a) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68, 245-253.
[8]  Dionisi, H.M., Layton, A.C., Robinson, K.G., Brown, J.R. Gregory, I.R., Parl, J.J. and Saylor, G.S. (2002b) Quantification of Nitrosomonas oligotropha and Nitrospira spp. using competitive polymerase chain reaction in bench-scale wastewater treatment reactors operating at different solids retention times. Water Environ Res 74, 462-469.
[9]  Donaldson, J.M. and Henderson, G.S. (1989) A dilute medium to determine population size f ammonium oxidizers in soil. Soil Sci Soc Am J 53, 1608-1611.
[10]  Dworking, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. New York: Online, Springer-Verlag,
[11]  Fla¨rdh, K., Cohen, P. and Kjelleberg, S. (1992) Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol 174, 6780-6788.
[12]  Gieseke, A., Purkhold, U., Wagner, M., Amann, R. and Schramm, A. (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67, 1351-1362.
[13]  Guo, J.H., Peng, Y.Z., Wang, S.Y., Zheng, Y.N., Huang, H.J., Wang, Z.W., 2009. Longterm effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresour. Technol. 100 (11), 2796-2802.
[14]  Hanaki, K., Wanatwin, C. and Ohgaki, S. (1990) Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Res 24, 289-296.
[15]  Harms, G., Layton, A.C., Dionisi, H.M., Gregory, I.R., Garrett, V.M, Hawkins, S.A., Robinson, K.G. and Sayler, G.S. (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plan. Environ Sci Technol 37, 343-351.
[16]  He, Y.L., Tao, W.D., Wang, Z.Y., Shayya, W., 2012. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. J. Environ. Manage. 110, 103-109.
[17]  Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., Loosdrecht, M.C.M., Heijnen, J.J., 1998. The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater. Water Sci. Technol. 37 (9), 135-142.
[18]  Henze, M., Aspegren, H., Jansen, J.C., Nielsen, P.H. and Lee, N. (2002) Effects of solids retention time and wastewater characteristics on biological phosphorus removal. Water Sci Technol 45, 137-144.
[19]  Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K. and Molin, S. (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395-2407.
[20]  Jaspers, E. and Overmann, J. (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70, 4831-4839.
[21]  Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.-H., Pommerening-Ro¨ser, A., Koops, H.-P. and Wagner, M. (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64, 3042-3051.
[22]  Koch, G., Ku¨hni, M. and Siegrist, H. (2001) Calibration and validation of an ASM3-based steady-state model for activated sludge systems. Part 1. Prediction of nitrogen removal and sludge production. Water Res 35, 2235-2245.
[23]  Koops, H.P., Bo¨ttcher, B. Mo¨ller, U.C. Pommerening-Ro¨ser, A. and Stehr, G. (1991) Classification of eight new species of ammoniaoxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarinii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov, Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137, 1689-1699.
[24]  Koops, H.-P., Purkhold, U., Pommerening-Ro¨ser, A., Timmermann, G. and Wagner, M. (2003) The litotrophic ammonia oxidizing bacteria. In: The Prokaryotes, an Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3Æ13, March 2003 ed.
[25]  Kowalchuk, G.A., Stephen, J.R., de Boer, W., Prosser, J.I., Embley, T.M. and Woldendorp, J.W. (1997) Analysis of ammonia-oxidizing bacteria of the ß subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 6S ribosomal DNA fragments. Appl Environ Microbiol 63, 1489-1497.
[26]  Laanbroek, H.J. and Gerards, S. (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Arch Microbiol 159, 453-459.
[27]  MacDonald, R.M. and Spokes, J.R. (1980) A selective and diagnostic medium for ammonia oxidising bacteria. FEMS Microbiol Lett 8, 143-145.
[28]  Manz, W., Amann, R., Ludwig, W., Wagner, M. and Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15, 593-600.
[29]  Maulin P Shah, Patel KA, Nair SS, Darji AM, Shaktisinh Maharaul. Optimization of Environmental Parameters on Decolorization of Remazol Black B Using Mixed Culture. American Journal of Microbiological Research. 2013 (1), 3, 53-56.
[30]  Maulin P Shah, Patel KA, Nair SS, Darji AM, Shaktisinh Maharaul. Microbial Degradation of Azo Dye by Pseudomonas spp. MPS-2 by an Application of Sequential Microaerophilic and Aerobic Process. American Journal of Microbiological Research. 2013 (1), 43, 105-112.
[31]  Maulin P Shah, Patel KA, Nair SS, Darji AM. Microbial Decolorization of Methyl Orange Dye by Pseudomonas spp. ETL-M. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 2, 54-59.
[32]  Maulin P Shah, Patel KA, Nair SS, Darji AM. Microbial Degradation and Decolorization of Reactive Orange Dye by Strain of Pseudomonas Spp. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 1, 1-5.
[33]  Maulin P Shah, Patel KA, Nair SS, Darji AM. An Innovative Approach to Biodegradation of Textile Dye (Remazol Black) by Bacillus spp. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 2, 43-48.
[34]  Mobarry, B.K., Wagner, M., Urbain, V., Rittman, B.E. and Stahl, D.A. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62, 2156-2162.
[35]  Mobarry, B.K., Wagner, M., Urbain, V., Rittman, B.E. and Stahl, D.A. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62, 2156-2162.
[36]  Morgenroth, E., Obermayer, A., Arnold, E., Bru¨ hl, A., Wagner, M. and Wilderer, P.A. (2000) Effect of long-term idle periods on the performance of sequencing batch reactors. Water Sci Technol 41, 105-113.
[37]  Mosquera-Corral, A., González, F., Campos, J.L., Mendéz, R., 2005. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochem. 40, 3109-3118.
[38]  Park, S., Bae, W., Rittmann, B.E., 2010. Operational boundaries for nitrite accumulation in nitrification based on minimum maximum substrate concentrations that include effects of oxygen limitation, pH, and free ammonia and free nitrous acid inhibition. Environ. Sci. Technol. 44, 335-342.
[39]  Pommerening-Ro¨ser, A., Rath, G. and Koops, H.-P. (1996) Phylogenetic diversiy within the genus Nitrosomonas. Sys Appl Microbiol 19, 344-351.
[40]  Purkhold, U., Pommerening-Ro¨ser, A., Juretschko, S., Schmid, M.C., Koops, H.P. and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66, 5368-5382.
[41]  Randall, C.W., Barnard, J.L. and Stensel, H.D (1992) Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal. Lancaster, PA: Technomic Publishing Co. Inc.
[42]  Rowan, A.K., Snape, J.R., Fearnside, D., Barer, M.R., Curtis, T.P. and Head, I.M. (2003) Composition and diversity of ammoniaoxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43, 195-206.
[43]  Saitou, N. and Nei, M. (1987) The neighbor joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4, 406-425.
[44]  Sun, H.W., Yang, Q., Dong, G.R., Hou, H.X., Zhang, S.J., Yang, Y.Y., Peng, Y.Z., 2010. Achieving the nitrite pathway using FA inhibition and process control in UASB-SBR system removing nitrogen from landfill leachate. Sci. China Chem. 53 (5), 1210-1216.
[45]  Tao, W.D., He, Y.L., Wang, Z.Y., Smith, R., Shayya, W., Pei, Y.S., 2012. Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater. Ecol. Eng. 47, 76-82.
[46]  Tiveljung, A., Backstro¨m, J., Forsum, U. and Monstein, H.-J. (1995) Broad-range PCR amplification and DNA sequence analysis reveals variable motifs in 16S rRNA genes of Mobiluncus species. Acta Pathol Microbiol Immunol Scand 103, 755-763.
[47]  Van de Peer, Y. and De Wachter, R. (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569-570.
[48]  Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N. and Daims, H. (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81, 665-680.
[49]  Wagner, M., Rath, G., Amann, R., Koops, H.-P. and Schleifer, K.-H. (1995) In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18, 251-264.
[50]  Wagner, M., Rath, G., Amann, R., Koops, H.-P. and Schleifer, K.-H. (1995) In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18, 251-264.
[51]  Wang, F., Liu, Y., Wang, J.H., Zhang, Y.L., Yang, H.Z., 2012. Influence of growth manner on nitrifying bacterial communities and nitrification kinetics in three lab-scale bioreactors. J. Ind. Microbiol. Biotechnol. 39, 595-604.
[52]  Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697-703.
[53]  Yapsakli, K., Aliyazicioglu, C., Mertoglu, B., 2011. Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant. J. Environ. Manage. 92, 714-723.
[54]  Zeng, W., Li, L., Yang, Y.Y., Wang, S.Y., Peng, Y.Z., 2010. Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A2O) process at ambient temperatures. Bioresour. Technol. 101, 8074-8082.
[55]  Zhu, G.B., Peng, Y.Z., Li, B.K., Guo, J.H., Yang, Q., Wang, S.Y., 2008. Biological removal of nitrogen from wastewater. Rev. Environ. Contam. Toxicol. 192, 159-195.