American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: https://www.sciepub.com/journal/ajwr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Water Resources. 2024, 12(4), 139-148
DOI: 10.12691/ajwr-12-4-4
Open AccessArticle

Hydrochemical Assessment of Groundwater Quality in the City of Manga and the Surrounding Area, Burkina Faso, West Africa

Césard Millogo1, 2, , Blehiman Sagnon3, Sayoba Kafando2 and Samuel Nakolendoussé2

1UFR/Sciences Appliquées et Technologies, Université Daniel OUEZZIN-COULIBALY, BP 139, Dédougou, Burkina Faso

2Laboratoire Géosciences et Environnement (LaGE), Département des Sciences de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso

3Bureau des Mines et de la Géologie du Burkina (BUMIGEB), 01 B.P 601 Ouagadougou 01, Burkina Faso

Pub. Date: November 14, 2024

Cite this paper:
Césard Millogo, Blehiman Sagnon, Sayoba Kafando and Samuel Nakolendoussé. Hydrochemical Assessment of Groundwater Quality in the City of Manga and the Surrounding Area, Burkina Faso, West Africa. American Journal of Water Resources. 2024; 12(4):139-148. doi: 10.12691/ajwr-12-4-4

Abstract

The population of the city of Manga and the surrounding area is supplied with drinking water by boreholes exploiting the fractured rock aquifer. However, these boreholes are often managed without considering the impact of natural geogenic and anthropogenic sources of toxic chemicals, which can threaten groundwater quality. Major ion geochemistry, water quality index calculations have been used to understand the hydrogeochemical processes controlling water quality. To carry out this study, 94 water samples from wells were collected and analyzed. Physicochemical parameters indicate neutral and soft waters due to low mineralization. The dominant ions are Ca²⁺, Mg²⁺, and HCO₃⁻. Most of the analyzed samples are considered excellent according to the WQI. Analysis using bivariate diagrams revealed that the main factors affecting solute acquisition in groundwater are silicate weathering, mineral dissolution and precipitation, ion exchange, and evapotranspiration. This study enabled us to assess the hydrochemical quality of the water and gain a better understanding of the physico-chemical processes controlling the mineralization of groundwater in the study area. It will therefore be a decision-making tool for sustainable water management.

Keywords:
groundwater hydrochemical evolution saturation indices WQI Manga Burkina Faso

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  J. Chen, H. Qian, and H.-D. Wu, ‘Nitrogen contamination in groundwater in an agricultural region along the New Silk Road, northwest China: distribution and factors controlling its fate’, Environmental Science and Pollution Research, vol. 24, pp. 13154–13167, 2017.
 
[2]  C. Grimaldi, ‘Grimaldi C. Hydrochimie de petits bassins versants Apports à la connaissance du fonctionnement géochimique du sol et de la qualité de l’eau des cours d’eau,’ in: UMR INRA-Agrocampus « Sol Agronomie Spatialisation » Rennes, Université de Rennes 1, 2004.
 
[3]  S. G. Johnston, E. D. Burton, T. Aaso, and G. Tuckerman, ‘Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands’, Chemical Geology, vol. 371, pp. 9–26, 2014.
 
[4]  W. Liu and J. B. Sha, ‘Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16Si-based alloys prepared via spark plasma sintering’, Materials & Design, vol. 111, pp. 301–311, Dec. 2016.
 
[5]  C. Neukum and R. Azzam, ‘Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany’, Hydrogeology Journal, vol. 20, pp. 547–560, 2012.
 
[6]  R. R. Pant et al., ‘Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal’, Science of The Total Environment, vol. 622–623, pp. 770–782, May 2018.
 
[7]  L. Zhang et al., ‘Probabilistic risk assessment of Chinese residents’ exposure to fluoride in improved drinking water in endemic fluorosis areas’, Environmental Pollution, vol. 222, pp. 118–125, 2017.
 
[8]  L. Zong-Jie, L. Zong-Xing, S. Ling-Ling, M. Jin-Zhu, and S. Yong, ‘Environment significance and hydrochemical characteristics of supra-permafrost water in the source region of the Yangtze River’, Science of The Total Environment, vol. 644, pp. 1141–1151, Dec. 2018.
 
[9]  L. Zong-Jie, S. Ling-Ling, and M. Jin-Zhu, ‘Hydrochemical characteristics and environmental significance in different ablation period in Hulugou River Basin in Qilian Mountain’, Environ Earth Sci, vol. 76, no. 17, p. 606, Sep. 2017.
 
[10]  K. W. Mandernack, L. Lynch, H. R. Krouse, and M. D. Morgan, ‘Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry’, Geochimica et Cosmochimica Acta, vol. 64, pp. 3949–3964, 2000.
 
[11]  G. L. Macpherson, ‘CO2 distribution in groundwater and the impact of groundwater extraction on the global C cycle’, Chemical Geology, vol. 264, pp. 328–336, 2009.
 
[12]  J. I. Drever, The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice Hall, 1997. [Online]. Available: https://books.google.bf/books?id=mbYPAQAAIAAJ.
 
[13]  H. P. Broers and B. van der Grift, ‘Regional monitoring of temporal changes in groundwater quality’, Journal of Hydrology, vol. 296, no. 1, pp. 192–220, 2004.
 
[14]  M. Jalali and Z. V. Khanlari, ‘Major ion chemistry of groundwaters in the Damagh area, Hamadan, western Iran’, Environmental Geology, vol. 54, no. 1, pp. 87–93, Mar. 2008.
 
[15]  J. Perrin, S. Ahmed, and D. Hunkeler, ‘The effects of geological heterogeneities and piezometric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern India’, Hydrogeology Journal, vol. 19, pp. 1189–1201, 2011.
 
[16]  C. Millogo, C. Bakouan, and S. Sawadogo, ‘Caractérisation physico-chimique des eaux de surface et des altérites du bassin versant du lac Bam, Centre Nord du Burkina Faso’, Afrique Science, vol. 5, no. 17, pp. 137–150, 2020.
 
[17]  C. Millogo, C. Bakouan, A. Sako, and S. Nakolendoussé, ‘Hydrogeochemical Characterization and Multivariate Analysis of Groundwater in Pala, Burkina Faso: Implications for Sustainable Water Management’, Int. Res. J. Pure Appl. Chem., vol. 25, no. 5, pp. 17–34, Aug. 2024.
 
[18]  G. B. Bonan, ‘Effects of Land Use on the Climate of the United States’, Climatic Change, vol. 37, no. 3, pp. 449–486, Nov. 1997.
 
[19]  R. A. Pielke et al., ‘Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate’, Global Change Biology, vol. 4, 1998, [Online]. Available: https://api.semanticscholar.org/CorpusID:85591113.
 
[20]  A. J. Pitman, G. T. Narisma, R. A. Pielke, and N. J. Holbrook, ‘Impact of land cover change on the climate of southwest Western Australia’, J. Geophys. Res., vol. 109, no. D18, p. 2003JD004347, Sep. 2004.
 
[21]  R. F. Stallard and J. M. Edmond, ‘Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load’, Journal of Geophysical Research, vol. 88, pp. 9671–9688, 1983.
 
[22]  A. K. Singh, B. Raj, A. K. Tiwari, and M. K. Mahato, ‘Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India’, Environmental Earth Sciences, vol. 70, pp. 1225–1247, 2013.
 
[23]  A. Kundu and S. K. Nag, ‘Assessment of groundwater quality in Kashipur Block, Purulia district, West Bengal’, Applied Water Science, vol. 8, pp. 1–18, 2018.
 
[24]  K. W. F. Howard, ‘Sustainable cities and the groundwater governance challenge’, Environ Earth Sci, vol. 73, no. 6, pp. 2543–2554, Mar. 2015.
 
[25]  M. R. Khan et al., ‘Megacity pumping and preferential flow threaten groundwater quality’, Nature Communications, vol. 7, 2016, [Online]. Available: https:// api.semanticscholar.org/ CorpusID:12331258.
 
[26]  P. Debels, R. Figueroa, R. Urrutia, R. Barra, and X. Niell, ‘Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index’, Environ Monit Assess, vol. 110, no. 1–3, pp. 301–322, Nov. 2005.
 
[27]  M. V. Prasanna et al., ‘Identification of the geochemical processes in coastal groundwater using hydrogeochemical and isotopic data: A Case study of the Gadilam river basin in southern India’, 2008. [Online]. Available: https:// api.semanticscholar.org/ CorpusID: 134483767.
 
[28]  S. Chidambaram et al., ‘Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India’, Front. Earth Sci., vol. 5, no. 2, pp. 197–206, 2011.
 
[29]  A. Sako and S. Kafando, ‘Hydrogeochemical and spatial assessment of groundwater quality from basement aquifers in the Central Plateau Region of Burkina Faso, West Africa’, Environ Earth Sci, vol. 80, no. 9, p. 358, May 2021.
 
[30]  W. Ocampo-Duque, M. Schuhmacher, and J. L. Domingo, ‘A neural-fuzzy approach to classify the ecological status in surface waters’, Environmental Pollution, vol. 148, no. 2, pp. 634–641, Jul. 2007.
 
[31]  H. Boyacıoğlu, ‘Development of a water quality index based on a European classification scheme’, Water SA, vol. 33, pp. 101–106, 2009.
 
[32]  N. Kagambega and C. Castaing, ‘Notice explicative de la Carte géologique du Burkina Faso à 1/200 000 ; Feuille NC-30-XXIII Pô’, BRGM, Orléans – France, N° 7.ACP.BK.074, 2003.
 
[33]  V. Sattran and U. Wenmenga, Géologie du Burkina/Geology of Burkina, Czech Geological Survey. Prague, 2002.
 
[34]  B. Dewandel, P. Lachassagne, R. Wyns, J. C. Maréchal, and N. S. Krishnamurthy, ‘A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering’, Journal of Hydrology, vol. 330, no. 1–2, pp. 260–284, Oct. 2006.
 
[35]  R. G. Taylor and K. W. F. Howard, ‘A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: Evidence from Uganda’, Hydrogeology Journal, vol. 8, pp. 279–294, 2000.
 
[36]  P. Lachassagne and R. J. Berkowitz, ‘Aquifères de socle. Nouveaux concepts. Application à la prospection et la gestion de la ressource en eau’, BRGM, no. 2, pp. 32–37, 2005.
 
[37]  S. Ouandaogo-Yameogo, B. Blavoux, J. Nikiema, and A. N. Savadogo, ‘Caractérisation du fonctionnement des aquifères de socle dans la région de Ouagadougou à partir d’une étude de la qualité chimique des eaux’, rseau, vol. 26, no. 3, pp. 173–191, Oct. 2013.
 
[38]  P. A. Domenico and F. W. Schwartz, ‘Physical and Chemical Hydrogeology.’ Wiley, 1990.
 
[39]  C. R. Ramakrishnaiah, C. Sadashivaiah, and G. Ranganna, ‘Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India’, Journal of Chemistry, vol. 6, no. 2, pp. 523–530, Jan. 2009.
 
[40]  M. Ketata-Rokbani, M. Gueddari, and R. Bouhlila, ‘Use of Geographical Information System and Water Quality Index to Assess Groundwater Quality in El Khairat Deep Aquifer (Enfidha, Tunisian Sahel)’, 2011. [Online]. Available: https:// api.semanticscholar.org /CorpusID: 91176792.
 
[41]  M. Coetsiers and K. Walraevens, ‘Chemical characterization of the Neogene Aquifer, Belgium’, Hydrogeol J, vol. 14, no. 8, pp. 1556–1568, Nov. 2006.
 
[42]  D. A. Lipson et al., ‘Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem’, Biogeosciences, vol. 9, pp. 577–591, 2011.
 
[43]  M. O. Rivett, J. W. N. Smith, S. R. Buss, and P. Morgan, ‘Nitrate occurrence and attenuation in the major aquifers of England and Wales’, Quarterly Journal of Engineering Geology and Hydrogeology, vol. 40, no. 4, pp. 335–352, 2007
 
[44]  E. Petelet-Giraud, P. Négrel, L. Gourcy, C. Schmidt, and M. Schirmer, ‘Geochemical and isotopic constraints on groundwater-surface water interactions in a highly anthropized site. The Wolfen/Bitterfeld megasite (Mulde subcatchment, Germany).’, Environmental pollution, vol. 148 3, pp. 707–17, 2007.
 
[45]  R. A. Freeze and J. A. Cherry, Groundwater. Englewood Cliffs, N.J: Prentice-Hall, 1979.
 
[46]  J. D. Hem, ‘Calculation and Use of Ion Activity’, p. 25, 1961.
 
[47]  S. Madasamy et al., ‘Geochemical characterization of groundwater and water quality assessment for sustainable management of hard rock aquifer in South India’, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID: 236626035
 
[48]  C. Thivya et al., ‘A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India)’, Environment, Development and Sustainability, vol. 15, pp. 1365–1387, 2013.
 
[49]  C. N. Sawyer, P. L. McCarty, and G. F. Parkin, ‘Chemistry for environmental engineering and science’, 2002. [Online]. Available: https://api.semanticscholar.org/CorpusID: 109456116.
 
[50]  Y. Srinivasa Rao and D. K. Jugran, ‘Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS’, Hydrological Sciences Journal, vol. 48, no. 5, pp. 821–833, Oct. 2003.
 
[51]  H. A. Schroeder, ‘Relations between hardness of water and death rates from certain chronic and degenerative diseases in the United States.’, J Chronic Dis, vol. 12, pp. 586–591, Dec. 1960.
 
[52]  J. Wu et al., ‘Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China’, Environmental Earth Sciences, vol. 76, no. 13, p. 460, Jul. 2017.
 
[53]  S. Rose, ‘Comparative major ion geochemistry of Piedmont streams in the Atlanta, Georgia region: possible effects of urbanization’, Environmental Geology, vol. 42, no. 1, pp. 102–113, May 2002.
 
[54]  K. M. Subrahmanyam and P. Yadaiah, ‘Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India’, Hydrogeology Journal, vol. 9, pp. 297–312, 2001.
 
[55]  E. K. Berner and R. A. Berner, ‘Global Water Cycle: Geochemistry and Environment’, 1987. [Online]. Available: https:// api.semanticscholar.org/CorpusID: 128967808.
 
[56]  C. A. J. Appelo and D. J. Postma, ‘Geochemistry, groundwater and pollution’, 1993. [Online]. Available: https:// api.semanticscholar.org/CorpusID: 140583539.
 
[57]  T. H. E. Heaton, ‘Sources of the nitrate in phreatic groundwater in the western Kalahari’, Journal of Hydrology, vol. 67, pp. 249–259, 1984.
 
[58]  J. N. Aranibar, I. C. Anderson, S. Ringrose, and S. A. Macko, ‘Title: Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies’, Journal of Arid Environments, vol. 54, pp. 345–358, 2003.
 
[59]  T. H. E. Heaton, A. S. Talma, and J. C. Vogel, ‘Origin and history of nitrate in confined groundwater in the western Kalahari’, Journal of Hydrology, vol. 62, pp. 243–262, 1983.
 
[60]  J. M. Holloway and R. A. Dahlgren, ‘Nitrogen in rock: Occurrences and biogeochemical implications’, Global Biogeochemical Cycles, vol. 16, no. 4, Dec. 2002.
 
[61]  P. Li, J. Wu, and H. Qian, ‘Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China’, Arabian Journal of Geosciences, vol. 9, no. 1, p. 15, Dec. 2015.
 
[62]  WHO, ‘Guidelines for drinking-water quality’, 2011, Accessed: Aug. 10, 2024. [Online]. Available: https://iris.who.int/handle/10665/44584.
 
[63]  J. Wu and Z. Sun, ‘Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China’, Expo Health, vol. 8, no. 3, pp. 311–329, Sep. 2016.
 
[64]  J. A. Barth, ‘Das Vorkommen der chemischen Elemente auf der Erde’, 1935. [Online]. Available: https:// api.semanticscholar.org/ CorpusID: 129103469.
 
[65]  J. Gaillardet, B. Dupré, P. Louvat, and C. J. Allègre, ‘Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers’, Chemical Geology, vol. 159, no. 1, pp. 3–30, 1999.
 
[66]  A. K. Tiwari, R. Ghione, M. De Maio, and M. Lavy, ‘Evaluation of hydrogeochemical processes and groundwater quality for suitability of drinking and irrigation purposes: a case study in the Aosta Valley region, Italy’, Arabian Journal of Geosciences, vol. 10, no. 12, p. 264, Jun. 2017.
 
[67]  A. L. Mayo and M. D. Loucks, ‘Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah’, Journal of Hydrology, vol. 172, no. 1–4, pp. 31–59, Nov. 1995.
 
[68]  L. Belkhiri, L. Mouni, and A. Tiri, ‘Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria’, Environ Geochem Health, vol. 34, no. 1, pp. 1–13, Feb. 2012.
 
[69]  T. E. Cerling, B. L. Pederson, and K. L. V. Damm, ‘Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets’, Geology, vol. 17, pp. 552–554, 1989.
 
[70]  R. S. Fisher and I. William F. Mullican, ‘Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater Beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA’, Hydrogeology Journal, vol. 5, pp. 4–16, 1997.
 
[71]  R. Barzegar, A. A. Moghaddam, M. Najib, N. Kazemian, and J. F. Adamowski, ‘Characterization of hydrogeologic properties of the Tabriz plain multilayer aquifer system, NW Iran’, Arabian Journal of Geosciences, vol. 9, pp. 1–17, 2016.
 
[72]  C. A. J. Appelo and D. Postma, Geochemistry, groundwater and pollution, CRC Press. London, 2005.
 
[73]  L. P. Younger, Groundwater in the environment: an introduction, Blacwell Publishing. Oxford, 2007.
 
[74]  M. H. Ozler, ‘Hydrochemistry and salt-water intrusion in the Van aquifer, east Turkey’, Environmental Geology, vol. 43, no. 7, pp. 759–775, Mar. 2003.