American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: https://www.sciepub.com/journal/ajwr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Water Resources. 2024, 12(4), 120-133
DOI: 10.12691/ajwr-12-4-2
Open AccessArticle

Hydrogeological Characteristics and Geophysical Study of Base Aquifers in the Island of Grande Comore: Implications for Water Resources and Saline Intrusion

Ayouba Mmadi1, 2, , Axel Laurel Tcheheumeni Djanni1, 2, Huguette Christiane Emvoutou3, Abdoul Aziz Oubeidillah4 and Serigne Faye1

1Department of Geology, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal

2Sustainable Development Géophysics (SDG) Lab, University Cheikh Anta Diop, Dakar, Senegal

3Department of Earth science of faculty of sciences, University of Douala (LGRNE)/FS/U-Do), Cameroon

4University of Texas Rio Grande Valley, États-Unis

Pub. Date: October 11, 2024

Cite this paper:
Ayouba Mmadi, Axel Laurel Tcheheumeni Djanni, Huguette Christiane Emvoutou, Abdoul Aziz Oubeidillah and Serigne Faye. Hydrogeological Characteristics and Geophysical Study of Base Aquifers in the Island of Grande Comore: Implications for Water Resources and Saline Intrusion. American Journal of Water Resources. 2024; 12(4):120-133. doi: 10.12691/ajwr-12-4-2

Abstract

The Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) methods surveys were employed to conduct hydrogeological investigations within the three massifs of Grande Comore. The geometric arrangement of Grande Comore can be subdivided into three distinct segments: A layer exhibiting very high resistivity values ranging from 1000 to over 6000 Ω.m, characterising historical, recent, sub-recent, and even ancient phases; Structures with resistivity values ranging from 100 to over 200 Ω.m, depicting freshwater aquifers; Layers with lower resistivity values ranging from 1 to 100 Ω.m, indicating interfaces between freshwater and saltwater. The island has heterogeneous sub-surface lava formations, with compact, relatively fractured layers that can channel preferential flows. These aspects are visualised through ERT panels, highlighting strong fault zones along the profiles. The perched aquifers, whose resistivity varies from 20 to 90 Ω.m, are exploited in the form of gallerys, mainly in the two massifs located at the extremities of the island. These analyses are supported by various data, including lithological profiles, groundwater table levels, groundwater quality, as well as data from VES. The aquifer porosity (φ) shows a variation ranging from 0.01 to 0.34, with an average of 0.124, and is closely related to hydraulic conductivity (Ks), fluctuating from 5.68 × 10-8 to 8 × 10-6 m/s following the application of the Kozeny equation. The Badjini massif stands out as a unique area with extensive alteration of volcanic aquifers and intercalated slag basalts. The coastal zones show low electrical resistivity values 20 to 100 Ω.m, indicating a substantial contribution from saltwater intrusion.

Keywords:
Electrical resistivity tomography (ERT) vertical electrical soundings (VES) Hydrogeological investigations Aquifers bases hydraulic conductivity Grande Comore

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  AFD, 2004. Approvisionnement en eau potable de la péninsule de Sima Projets/approvisionnement-en-eau-potable de la peninsule-de-sima.
 
[2]  GIEC, 2018. Réchauffement climatique : quelles conséquences sur l’eau? Centre d’information sur l’eau. URL : https://www.cieau.com/ eau-transition-ecologique/ enjeux/ rechauffement-climatique-les-consequences-sur-leau/ (accessed 7.10.23).
 
[3]  A Revil, Karaoulis M, Johnson T, Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20:617–658.
 
[4]  Attias, E., Thomas, D., Sherman, D., Ismail, K., Constable, S., 2020. Marine electrical imaging reveals novel freshwater transport mechanism in Hawaii. Sci. Adv. 6, eabd4866.
 
[5]  Claire E. Harnett a, Michael J. Heap 2021. Mechanical and topographic factors influencing lava dome growth and collapse
 
[6]  Svetlana Andrianova, Panicos O. Demetriades 2017 Développement financier et fragilité financière : les deux faces d'une même médaille.
 
[7]  Piscopo, V., Formica, F., Lana, L., Lotti, F., Pianese, L., Trifuoggi, M., 2020. Relationship Between Aquifer Pumping Response and Quality of Water Extracted from Wells in an Active Hydrothermal System: The Case of the Island of Ischia (Southern Italy). Water 12, 2576.
 
[8]  Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G., Violette, S., 2019. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Syst. Sci. 23, 2321–2338.
 
[9]  Cardiff, M., Barrash, W., Kitanidis, P., 2012. A field proof-of-concept of aquifer imaging using 3D transient hydraulic tomography with temporarily-emplaced equipment. Water Resources Research 48.
 
[10]  Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., Slooten, L.J., 2005. Inverse problem in hydrogeology. Hydrogeol J 13, 206–222.
 
[11]  Bourhane, A., Pierre, Jean-Christophe, 2014. Méthodes d’investigation de l’intrusion marine dans les aquifères volcaniques (La Réunion et La Grande Comore).
 
[12]  Coffin, M.F., Rabinowitz, P.D., 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. J. Geophys. Res. 92, 9385.
 
[13]  Flower, M.F.J., Strong, D.F., 1969. The significance of sandstone inclusions in lavas of the Comoros archipelago. Earth and Planetary Science Letters 7, 47–50.
 
[14]  Montaggioni, L.F., Nougier, J., 1981. Les enclaves de roches detritiques dans les Volcans d’Anjouan (Archipel des Comores); Origine et interpretation dans le cadre de l’evolution du Canal de Mozambique.
 
[15]  Morin J, Lavigne F (2009) Institutional and people’s response in the face of volcanic hazards in island environment: Case of Karthala volcano, Comoros Archipelago. Part II—deep-seated root causes of Comorian vulnerabilities. SHIMA Int J Res Island Cultures 3(1):54–71
 
[16]  Bachèlery, Coudray, 1993. Carte volcano-tectonique de la grande Comore (Ngazidja).
 
[17]  Emerick, C.M., Duncan, R.A., 1982. Age progressive volcanism in the Comoros Archipelago, western Indian Ocean and implications for Somali plate tectonics. Earth and Planetary Science Letters 60, 415–428.
 
[18]  Hajash, A., Armstrong, R.L., 1972. Paleo-magnetic and radiometric evidence for the age of the Comoros Islands, west central Indian Ocean. Earth and Planetary Science Letters 16, 231-236.
 
[19]  Spath Andreas, Roex Anton P. Le, Duncan Robert A., 1996. The Geochemistry of Lavas from the Gomores Archipelago, Western Indian Ocean: Petrogenesis and Mantle Source Region Characteristics. Journal of Petrology 37.
 
[20]  Desgrolard, F., 1996. Pétrologie des laves d’un volcan intra-plaque océanique : le Karthala, île de la Grande-Comore (R.F.I. des Comores) (phdthesis). Université Joseph-Fourier- Grenoble I.
 
[21]  Dille, A., Poppe, S., Mossoux, S., Soulé, H., Kervyn, M., 2020. Modeling Lahars on a Poorly Eroded Basaltic Shield: Karthala Volcano, Grande Comore Island. Front. Earth Sci. 8, 369.
 
[22]  Bachelery, P., Lenat, J., Di Muro, A., Michon, L., 2016. Active volcanoes of the southwest Indian Ocean. Berlin : Springer-Verlag.
 
[23]  Cissokho Adinane Ahamada, Abdoulaye Ndiaye, Diomaye Yatte, Papa Malick Ngom 2023. Contribution to the Petrographic and Geochemical Study of the Karthala Massif Lavas in the Bangaani Area, Grande Comore, Indian. Ocean.
 
[24]  D. Marini, 1990. Résultats et Interprétations d’une Campagne de Pompages d’Essai sur des Puits dans les Aquifères de base “Grande Comore” Ngazidja “Comores.”
 
[25]  Jean Marc, R., 2011. Rapport de la première phase de l’étude – A 61 585 B.
 
[26]  Izuka, S.K., Gingerich, S.B., 2003. A thick lens of fresh groundwater in the southern Lihue Basin, Kauai, Hawaii, USA. Hydrogeology Journal 11, 240–248.
 
[27]  Bourhane, A., Comte, J.-C., Join, J.-L., Ibrahim, K., 2016. Groundwater Prospection in Grande Comore Island Joint Contribution of Geophysical Methods, Hydrogeological Time-Series Analysis and Groundwater Modelling,
 
[28]  Vengosh, A., 2003. Salinization and Saline Environments, in: Treatise on Geochemistry. Elsevier, pp. 1–35.
 
[29]  Join, J.-L., 1991. Caractérisation hydrogéologique du milieu volcanique insulaire : Piton des Neiges, Île de la Réunion (Thèse de doctorat) Montpellier 2.
 
[30]  Coudray J, 1977. Recherches sur le Quaternaire marin de la Nouvelle-Calédonie: Contribution de l’étude des récifs coralliens et des éolianites associées à la reconstruction de l’histoire climatique et structurale.
 
[31]  Zohdy, R.A.A., Bisdorf, R.J., 1989. Zohdy, R.A.A. and Bisdorf, R.J. (1989) Schlumberger Sounding Data Processing and Interpretation Program. US Geological Survey, Washington DC.-References-Scientific Research Publishing
 
[32]  Edwards, L.S., 1977. A modified pseudo-section for resistivity and ip. Geophysics 42, 1020–1036.
 
[33]  Loke, M.H., Acworth, I., Dahlin, T., 2001. A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys. ASEG Extended Abstracts 2001, 1–4.
 
[34]  Dahlin, T., 1993. Automation of 2D resistivity surveying. Presented at the 55th EAEG Meeting, European Association of Geoscientists & Engineers, p. cp.
 
[35]  Dahlin, T., Zhou, B., 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52, 379–398.
 
[36]  Ward, S.H. 1990. Resistivity and Induced Polarization Methods in Geotechnical and Environmental Geophysics. Society of Exploration Geophysicists, Tulsa, 147-189.
 
[37]  Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54–62.
 
[38]  Mutaqin, D.Z., Hendarmawan, Haryanto, A.D., Mardiana, U., Mohammad, F., 2023. Contribution of Resistivity Properties in Estimating Hydraulic Conductivity in Ciremai Volcanic Deposits.
 
[39]  Huntley, D., 1986. Relations between Permeability and Electrical Resistivity in Granular Aquifers. Groundwater 24, 466–474.
 
[40]  Campos, D., 2004. Une etude de caracterisation de la structure interne d’une halde a steriles par methodes geophysiques.
 
[41]  Soupios, P.M., Georgakopoulos, P., Papadopoulos, N., Saltas, V., Andreadakis, A., Vallianatos, F., Sarris, A., Makris, J.P., 2007. Use of engineering geophysics to investigate a site for a building foundation. Journal of Geophysics and Engineering 4, 94–103.
 
[42]  Glover, P.W.J., 2016. Archie’s law – a reappraisal. Solid Earth 7, 1157–1169.
 
[43]  Albouy, Y., Andrieux, P., Rakotondrasoa, G., Ritz, M., Descloitres, M., Join, J., Rasolomanana, E., 2001. Mapping Coastal Aquifers by Joint Inversion of DC and TEM Soundings Three Case Histories. Groundwater 39, 87–97.
 
[44]  Chapellier, D., 2000. Prospection électrique de surface. https://scholar.google.com/scholar.
 
[45]  Kozeny, J. (Ed.). (1953). Hydraulik. Vienna: Springer Vienna.
 
[46]  Michael N. Machette 2000. Active, capable, and potentially active faults a paleoseismic perspective p U.S. Geological Survey, Central Region, Geologic Hazards Team, Denver, CO 80225, USA.
 
[47]  Savin, C., Ritz, M., Join, J.-L., Bachelery, P., 2001. Hydrothermal system mapped by CSAMT on Karthala volcano, Grande Comore Island, Indian Ocean. Journal of Applied Geophysics 48, 143–152.
 
[48]  Join, J.-L., Coudray, J., 1993. Caractérisation géo-structurale des émergences et typologie des nappes d’altitude en milieu volcanique insulaire (Ile de la Réunion). Geodinamica Acta 6, 243–254.