American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: https://www.sciepub.com/journal/ajwr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Water Resources. 2024, 12(3), 86-92
DOI: 10.12691/ajwr-12-3-3
Open AccessArticle

Dynamics of Surface Conditions and Hydrological Functioning: The Case of the Ivorian River Basin Aghien Lagoon with the SWAT Model

Kansaye A. Daifourou1, , Noufé D. Djibril1, Soro G. Emile1, Dao Amidou1, Kamagate Bamory1, Gone D. Lanciné1, Servat Eric2 and Mahe Gil2

1Geosciences and Environment Laboratory, Nangui Abrogoua University, Abidjan, Côte d’Ivoire

2UMR HydroSciences, IRD Université Montpellier 2, Montpellier, France

Pub. Date: August 16, 2024

Cite this paper:
Kansaye A. Daifourou, Noufé D. Djibril, Soro G. Emile, Dao Amidou, Kamagate Bamory, Gone D. Lanciné, Servat Eric and Mahe Gil. Dynamics of Surface Conditions and Hydrological Functioning: The Case of the Ivorian River Basin Aghien Lagoon with the SWAT Model. American Journal of Water Resources. 2024; 12(3):86-92. doi: 10.12691/ajwr-12-3-3

Abstract

In the Aghien lagoon hydrosystem, surface conditions are a major factor affecting hydrological processes. Changes in hydrological processes have a significant impact on the availability of water resources. The aim of this study is therefore to simulate the rainfall-discharge relationship in relation to demographic pressure and the dynamics of land use in the catchment area of the Aghien lagoon in southern Côte d'Ivoire. For this purpose, the SWAT model was calibrated and validated using daily time scale flow data at the outlet of the Djibi catchment for the reference year (1987) and gave satisfactory results (NSE ≥ 0.50, R2 ≥ 0.50 and PBIAS ≤ 10). An increase in surface runoff, water supply and evapotranspiration (5.61%), (0.15%) and (0.04%) associated with a decrease in lateral flow (Lat_Q), groundwater flow (Gw_Q), percolation (Perco) and potential evapotranspiration (ETP) (-19.20%), (-6.74%), (-0.15%) and (-0.14), were observed in 2020 compared with the reference year (1987). In a context of climate variability and change, the dynamics of the vegetation cover can provide information about changes in the major hydrological processes such as runoff, infiltration, etc. The increase in runoff and the decrease in infiltration observed can be linked to the dynamics of the plant cover, which has been replaced by crops and bare soil with a higher runoff capacity, thus partly explaining the increase in runoff and the decrease in infiltration.

Keywords:
Dynamics of surface conditions hydrological functioning Ivorian river Aghien Lagoon Swat Model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Mariye, Mehari & Jianhua, Li & Maryo, Melesse. (2022). Land use and land cover change, and analysis of its drivers in Ojoje watershed, Southern Ethiopia. Heliyon. 8. 1-13. 10.1016/j.heliyon. 2022. e09267.
 
[2]  Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., Melesse, A.M. (2021). Modeling the impacts of land use and land cover dynamics on hydrological processes of the Keleta watershed, Ethiopia. Sustain Environ 7(1): 1947632.
 
[3]  Lambin, E.F., Geist, H.J. and Lepers, E. (2003). Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annual Review of Environment and Resources, 28, 205-241.
 
[4]  Wu, J., Miao, C., Yang, T., Duan, Q., and Zhang, X.: Modeling streamflow and sediment responses to climate change and human activities in the Yanhe River, China, Hydrol. Res., 49, 150–162.
 
[5]  Diallo, S. (2019). Usages anthropiques et dynamique d’occupation du sol en lien avec les types de contaminants potentiels du bassin ivoirien de la lagune Aghien Thèse d’Etat, Université Nangui-Abrogoua, Abidjan, 284 p.
 
[6]  McDonald, M.G., and Harbaugh, A.W. (1988). A modular three-dimensional finite-difference ground-water flow model (U.S. G.P.O.,).
 
[7]  Beven, K.J., and KIirkby, M.J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24, 43–69.
 
[8]  Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen, J. (1986). An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology 87, 61–77.
 
[9]  Ledoux, E., Girard, G., De Marsily, G., Villeneuve, J.P., and Deschenes, J. (1989). Spatially distributed modeling: conceptual approach, coupling surface water and groundwater. In Unsaturated Flow in Hydrologic Modeling, H.J. Morel-Seytoux, ed. (Springer Netherlands), pp. 435–454.
 
[10]  Arnold, J. G. R., Srinivasan, R. S., Muttiah, and Williams, J. R. (1998). Large‐area hydrologic modeling and assessment: Part I. Model development. J. American Water Resour. Assoc. 34(1): 73-89.
 
[11]  Collischonn, W., and Tucci, C.E.M. (2001). Simulação hidrológica de grandes bacias. Revista Brasileira de Recursos Hídricos 6, 95-118.
 
[12]  Taleb, R. B., Naimi, M., Chikhaoui, M., Raclot, D., & Sabir, M. (2019). Evaluation Des Performances Du Modele Agro-Hydrologique SWAT à Reproduire Le Fonctionnement Hydrologique Du Bassin Versant Nakhla (Rif occidental, Maroc). European Scientific Journal, ESJ, 15(5), 311.
 
[13]  Shi, P., Chen, C., Srinivasan, R., Zhang, X., Cai, T., Fang, X., Qu, S. Chen, X., Li, Q. (2011). Evaluating the SWAT model for hydrological modeling in the Xixian Watershed and a comparison with the XAJ Model. Water Resour. Manage., 25, pp. 2595-2612.
 
[14]  Michaud A., Deslandes J., Beaudin I. (2006). Modélisation de l’hydrologie et des dynamiques de pollution diffuse dans le bassin versant de la rivière aux Brochets à l’aide du modèle SWAT. Rapport final, Institut de Recherche et de Développement en Agroenvironnement - Québec, 117 p.
 
[15]  Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., James, A. (2015). Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic., 58, pp. 55-63.
 
[16]  Gyamfi, C., Ndambuki, J.M., Salim, R.W. (2016). Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 8, 588.
 
[17]  Qiu, L., Wu, Y., Wang, L., Lei, X., Liao, W., Hui, Y., Meng, X. (2017). Spatiotemporal response of the water cycle to land use conversions in a typical hilly–gully basin on the Loess Plateau, China Hydrol. Earth Syst. Sci., 21, pp. 6485-6499.
 
[18]  Li, Y., Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., Fan, J. (2019). Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol. Res., 50, pp. 244-261
 
[19]  Chauhan, N., Kumar, V., Paliwal, R. (2020) Quantifying the impacts of decadal landuse change on the water balance components using Soil and water assessment Tool in Ghaggar river basin. SN Appl. Sci., 2, p. 1777
 
[20]  Hu, J., Wu, Y., Wang, L., Sun, P., Zhao, F., Jin, Z., Wang, Y., Qiu, L., Lian, Y. (2021). Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau J. Hydrol., 593 (2021), Article 125741
 
[21]  INS, “Recensement Général de la Population et de l’Habitation (RGPH) 1998. Données socio-démographiques et économiques des localités, résultats définitifs par localités, région des lagunes.” 26p, 2014.
 
[22]  Neitsch, S., Arnold, J., Kiniry, J.& Williams J. (2005). Soil and Water Assessment Tool Theoretical Documentation – Version 2005. Grassland, Soil & Water Research Laboratory, Agricultural Research Service, and Blackland Agricultural Research Station, Temple, TX, pp. 1–12.
 
[23]  Feyereisen, G.W., Strickland, T.C., Bosch, D.D., Sullivan, D.G., (2007). Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed. Transactions of the ASABE 50: 1–13.
 
[24]  Kuma, H. G., Feyessa, F. F., and Demissie, T. A. (2021). Hydrologic responses to climate and land-use/land-cover changes in the bilate catchment, Southern Ethiopia. Journal of Water and Climate Change, 12(8), 1–20.
 
[25]  Shang, X., Jiang, X., Jia, R. (2019). Land use and climate change effects on surface runoff variations in the upper heihe river basin. Water 11: 344.
 
[26]  Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., and Veith, T. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900.
 
[27]  Gebremicael, T. G., Mohamed, Y. A., & Van der Zaag, P. (2019). Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of the Total Environment, 660, 1155-1167.
 
[28]  Gashaw, T., Tulu, T., Argaw, M., Worqlul, A.W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia, Sci. Total Environ. 619–620, 1394–1408.
 
[29]  Woldesenbet, T.A., Elagib, N.A., Ribbe, L., Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia, Sci. Total Environ. 575 724–741.
 
[30]  Yan, R., Gao, J., Li, L. (2016). Modeling the hydrological effects of climate and land use/cover changes in Chinese lowland polder using an improved WALRUS model. Hydrol. Res. 47 (S1), 84–101.
 
[31]  Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., and Hauck, L.M. (2001). Validation of the Swat model on a Large Rwer basin with point and nonpoint Sources. JAWRA Journal of the American Water Resources Association 37, 1169–1188.
 
[32]  Van Liew, M., Arnold, J.G., and Garbrecht, J.D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the ASAE, 46: 1539-1551.
 
[33]  Koua, T.J.J., Jourda, J.P., Kouame, K.J., Anoh, K.A., N’Dri, W.K.C., Lazar, G. and Lane, S. (2014). Effectiveness of Soil and Water Assessment Tool Model to Simulate Water Flow in a Large Agricultural Complex Watershed: Case of Buyo Lake Basin, West of Côte D’Ivoire. Environmental Engineering and Management Journal, 13, 1735-1742.
 
[34]  N’Dri, W. K. C., Séverin, P., Jourda, J. P., & Kouamé, K. J. (2019). Application of SWAT to Estimate Water Balance in the Aghien Lagoon Basin, South-East of Côte d’Ivoire. International Journal of Science and Research, 8, 10.
 
[35]  Rollo, N. (2012) Modélisation des dynamiques de pollution diffuse dans le bassin versant de la rivière d’Auray : quantification, caractérisation et gestion des apports nutritifs terrigènes. Thèse de Doctorat, Université de Nantes. 397 p.
 
[36]  Martínez-Retureta, R., Aguayo, M., Stehr, A., Sauvage, S., Echeverría, C., Sánchez-Pérez, J.M., (2020). Effect of land use/cover change on the hydrological response of a Southern Center Basin of Chile Water, 12 (1), p. 302, 10.3390/w12010302.
 
[37]  Spruill, C., Workman, S., Taraba, J. (2000). Simulation of Daily and Monthly Stream Discharge from Small Watersheds Using the SWAT Model. Trans. ASAE 2000, 43, 1431–1439.
 
[38]  Romanowicz, A.A., Vanclooster, M., Rounsevell, M. and La Junesse, I. (2005). Sensitivity of the SWAT Model to the Soil and Land Use Data Parametrisation: A Case Study in the Thyle Catchment, Belgium. Ecological Modelling, 187, 27-39.
 
[39]  Chen, L., Wang, G., Zhong, Y., and Shen, Z. (2016) Evaluating the Impacts of Soil Data on Hydrological and Nonpoint Source Pollution Prediction. Science of the Total Environment, 563-564, 19-28.
 
[40]  Kouadio Z. A., Kouakou K. E., Konan-Waidhet A. B., Goula B. T. A., Savane I. (2015). Modélisation du comportement hydrologique du bassin versant du Boubo en milieu tropical humide de la Côte d’Ivoire par l’application du modèle hydrologique distribué CEQUEAU, Afrique Science, Vol.11, Issue 3, pp. 82-100.
 
[41]  Gauze, T. K. M., Morton, K. Y., Hermann, M. N., Largaton, S. G., & Emile, S. G. (2018). Impacts des changements de l’occupation du sol et des changements climatiques sur le bassin versant de la rivière Davo, Côte d’Ivoire. European Scientific Journal, ESJ, 14(33), 408.
 
[42]  Aduah, M. S., Jewitt, G. P. W., Toucher M.L.W. (2017). Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water 2018, 10, 9.
 
[43]  Ampofo, S., Manu, M. A., B., Ampadu, B., Adonadaga, M.G. (2022). Impact of Landuse and Landcover Changes on Hydrological Components of the Oti Sub-Basin of Ghana, Ghana Journal of Science, Technology and Development | Vol. 8, Issue 2, 2343-6727.
 
[44]  Abuhay, W., Gashaw, T., Tsegaye, W. (2023). Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay watershed using the SWAT model. J. Agric. Food Res. 12, 100535.
 
[45]  Berihun, M.L., Tsunekawa, A., Haregeweyn, N., Meshesha, D.T., Adgo, E., Tsubo, M., Masunaga, T., Fenta, A.A., Sultan, D., Yibeltal, M., Ebabu, K. (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia Sci. Total Environ., 689, pp. 347-365.
 
[46]  Osei, M.A., Amekudzi, L.K., Wemegah, D.D., Preko, K., Gyawu, E.S., Obiri-Danso K. (2019). The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis J. Hydrol: Reg. Stud., 25, p. 100620.