American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Water Resources. 2020, 8(4), 191-199
DOI: 10.12691/ajwr-8-4-5
Open AccessArticle

Groundwater Flow Modelling: A Decision-making Tool for Water Resource Management in Coastal Areas - Case Study of the Oussouye Plateau (South Senegal)

Djim M. L Diongue1, , Niokhor Ndour2, Mouhamadou D. Fall2, Diakher H. Madioune2, Babacar Dieng2 and Serigne Faye1

1Geology Department, Cheikh Anta Diop University, Dakar, Senegal

2DGPRE, Hydraulic Ministry, Dakar, Senegal

Pub. Date: September 01, 2020

Cite this paper:
Djim M. L Diongue, Niokhor Ndour, Mouhamadou D. Fall, Diakher H. Madioune, Babacar Dieng and Serigne Faye. Groundwater Flow Modelling: A Decision-making Tool for Water Resource Management in Coastal Areas - Case Study of the Oussouye Plateau (South Senegal). American Journal of Water Resources. 2020; 8(4):191-199. doi: 10.12691/ajwr-8-4-5


Hydrogeological and hydrochemical investigations were used to develop a conceptual model of the Continental Terminal (CT) aquifer functioning in the Oussouye plateau (South Senegal). Two field campaigns were carried out in June and October 2017 to measure physicochemical parameters and groundwater sampling. The geometry of the CT was established using geophysical technics (electrical methods) and the drilling logs from previous studies carried out in Oussouye region. These investigations led to build the mathematical model under the Visual modflow interface with the Modflow-2000 code developed by USGS. The results show a general trend of groundwater flow towards the Casamance River and its tributaries from piezometric mounds in the central area of the plateau which represent the potential recharge zones. Regarding chemical quality, electrical conductivity varies from 28 to 1314 µs/cm with high variance and standard deviation values reflecting variable sources, geochemical and dilution processes occurring in the plateau. The analysis of water samples shows an excellent groundwater quality. Major ions contents do not exceed WHO standards except Iron (Fe) which are relatively high in some wells. The mathematical model was calibrated in steady state. The average difference between simulated and observed head is 0.009 m and the root mean squared is less than 0.2m. Simulations under transient conditions showed that the groundwater is vulnerable to high pumping rate due to the drawdowns at the catchment wells, which can reach 7 m for 300 m3/d. This significant drawdown should be avoided for this type of piezometric configuration where the maximum hydraulic head is around 5 m. However, the model revealed a sustainable groundwater potential for the needs of local and neighboring populations by 200m3/d.

shallow aquifer Casamance costal area continental terminal groundwater management Modflow

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Vandenbohede, A., Van Houtte, E., & Lebbe, L. (2009). Sustainable groundwater extraction in coastal areas: a Belgian example. Environmental geology, 57(4), 735-747.
[2]  Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D., & Herrera, I. (Eds.). (1999). Seawater intrusion in coastal aquifers: concepts, methods and practices (Vol. 14). Springer Science & Business Media.
[3]  Essink, G. H. O. (2001). Improving fresh groundwater supply-problems and solutions. Ocean & Coastal Management, 44(5-6), 429-449.
[4]  Van Meir, N., & Lebbe, L. (1999). Simulations of evolution of salt-water distribution in young dunes near the French-Belgian border. Natuurwetenschappelijk Tijdschrift, 79(1-4), 105-113.
[5]  Aguilar-Pérez, L. A., Ortega-Guerrero, M. A., Lugo-Hubp, J., & Ortiz-Zamora, D. D. C. (2006). Análisis numérico acoplado de los desplazamientos verticales y generación de fracturas por extracción de agua subterránea en las proximidades de la Ciudad de México. Revista mexicana de ciencias geológicas, 23(3), 247-261.
[6]  De Rosnay, J. (1975). Le macrocosme: vers une vision globale. Éditions du Seuil.
[7]  Aracil. J (1968). Introduction à la dynamique de système. Lyon, P.U.L, 412p.
[8]  Benhachmi, M. K., Ouazar, D., Naji, A., Cheng, A. H. D., & Harrouni, K. (2003, March). Pumping optimization in saltwater intruded aquifers by simple genetic algorithm-Deterministic model. In 2nd International Conference on Saltwater Intrusion and Coastal Aquifers–Monitoring, Modelling and Management.
[9]  Hariharan, K. S., Tagade, P., & Ramachandran, S. (2017). Mathematical Modeling of Lithium Batteries: From Electrochemical Models to State Estimator Algorithms. Springer.
[10]  FED (1983). Étude Hydrogéologique du basin de la Casamance. Rapport de synthèse hydrogéologique du bassin sédimentaire casamançaise.
[11]  DGPRE (2018). Étude d’évaluation des potentialité du plateau d’Oussouye. Rapport des investigations hydrogéologique
[12]  McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.
[13]  Dupuit, J. (1863). Theoretical and practical studies on the movement of running water: Paris, Carilion-Goery et V
[14]  Faye, S., Faye, S.C., Ndoye, S. and Faye, A. (2003) Hydrogeochemistry of the Saloum (Senegal) Superficial Coastal Aquifer. Environmental Geology , 44, 127-136.
[15]  Faye, S., Maloszewski, P., Stichler, W., Trimborn, P., Faye, S.C. and Gaye, C.B. (2005) Groundwater Salinization in the Saloum (Senegal) Delta Aquifer: Minor Elements and Isotopic Indicators. Science of the Total Environment, 343, 243-259.
[16]  Piper, A.M. (1944) A Graphic Procedure in the Geochemical Interpretation of Water Analyses. American Geophysical Union Transactions, 25, 914-923.
[17]  Fisher, R. S., & Mullican III, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology journal, 5(2), 4-16.
[18]  Howard, G., Bartram, J., Water, S., & World Health Organization. (2003). Domestic water quantity, service level and health (No. WHO/SDE/WSH/03.02). World Health Organization.