American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: https://www.sciepub.com/journal/ajwr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Water Resources. 2020, 8(2), 69-77
DOI: 10.12691/ajwr-8-2-3
Open AccessArticle

Theoretical Characteristics of Deactivated Lichens Fixed Bed Column for the Crystal Violet and Methyl Red Dyes Adsorption

Kouassi Kouadio Dobi-Brice1, Ekou Lynda1, Yacouba Zoungranan2, and Ekou Tchirioua1

1Basic and Applied Sciences Training and Research Unit, Department of Chemistry. University Nangui Abrogoua 02 B.P. 801 Abidjan 02, Ivory Coast

2Biological Sciences Training and Research Unit, Department of Mathematics, Physics and Chemistry, University Peleforo Gon Coulibaly. B.P. 1328, Korhogo, Ivory Coast

Pub. Date: March 24, 2020

Cite this paper:
Kouassi Kouadio Dobi-Brice, Ekou Lynda, Yacouba Zoungranan and Ekou Tchirioua. Theoretical Characteristics of Deactivated Lichens Fixed Bed Column for the Crystal Violet and Methyl Red Dyes Adsorption. American Journal of Water Resources. 2020; 8(2):69-77. doi: 10.12691/ajwr-8-2-3

Abstract

Among the methods of wastewater treatment, adsorption is the one that remains accessible because it is easy to implement. It uses less expensive, abundant and available adsorbent supports. Adsorption can be implemented through two types of processes: continuous adsorption and discontinuous adsorption. Continuous adsorption allows the treatment of large volumes of water compared to discontinuous adsorption, which is suitable for the treatment of small quantities of water [1]. This study is part of an approach to the removal of toxic dyes using the continuous mode adsorption method. Two dyes were used: crystal violet and methyl red. The adsorbent fixed bed of the column consists of biomass of previously deactivated lichens. The influence of some physico-chemical parameters on the column such as flow rate, lichen grain size, adsorbent bed mass and initial dye concentration were evaluated. The application of Bohart-Adams, Thomas and Yonn-Nelson models to the experimental data made it possible to predict the theoretical characteristics of the column. For a given dye, under the influence of a given physico-chemical parameter, the application of the Bohart-Adams model determined the saturation concentration of the adsorbent bed (N0). The application of the Thomas model allowed to determine the theoretical adsorption capacity of the column (Qthe), and the Yonn-Nelson model allowed to predict the time (τ) necessary for the 50% breakthrough of the adsorbent bed.

Keywords:
wastewater adsorption column lichens models dyes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Piccin, J. S., Dotto, G. L., Vieira, M. L. G., “Kinetics and mechanism of the food dye FD&C red 40 adsorption onto chitosan.,” J Chem Eng Data, 56, 3759-3765, 2011.
 
[2]  Ahouré A. A. E. and Tano A. P., “Politique economique et developpement bilan diagnostic de l’industrie ivoirienne,” Abidjan, Côte d’Ivoire, 2009.
 
[3]  Dongo, K. R., Niamke, B. F., Adje, A. F., Britton, B. G. H., Nama, L. A., Anoh, K. P., Adima, A. A. and Atta, K., “Impacts des effluents liquides industriels sur l’environnement urbain d’Abidjan-Côte D’Ivoire,” Int. J. Biol. Chem. Sci, 7(1), 404-420, 2013.
 
[4]  Elmoubarki, R., Mahjoubi, F. Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., El Albani, A. and Barka, N., “Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics,” Water Resour. Ind., 9, 16-29, 2015.
 
[5]  Nidheesh, P. V., Zhou, M., and Oturan, M. A., “An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes,” Chemosphere, 197, 210-227, 2018.
 
[6]  Wijannarong, S., Aroonsrimorakot, S., Thavipoke, P., Kumsopa, C., and Sangjan, S., “Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation Process,” APCBEE Procedia, 5, 279-282, 2013.
 
[7]  Pirkarami, A. and Olya, M. E., “Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism,” J. Saudi Chem. Soc., 21, S179-S186, 2017.
 
[8]  Sohrabi, M. R., Khavaran A., Shariati S., and Shariati S., “Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design,” Arab. J. Chem., 10, S3523-S3531, 2017.
 
[9]  Nataraj, S. K., Hosamani K. M., and Aminabhavi T. M., “Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures,” Desalination, 249(1), 12-17, 2009.
 
[10]  Chaukura, N., Gwenzi W., Tavengwa N., and Manyuchi M. M., “Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries,” Environ. Dev., 19, 84-89, 2016.
 
[11]  El-Aziz, A., Aref, A. M. A., El-Wahab, M. M. A. and Soliman A. S., “Application of Modified Bagasse as a Biosorbent for Reactive Dyes Removal from Industrial Wastewater,” J. Water Resour. Prot., 5, 10-17, 2013.
 
[12]  Kausar, A., Munawar, I., Anum, J., Kiran, A., Zill-i-Huma, N., Haq, N. B. and Shazia, N., “Dyes adsorption using clay and modified clay: A review,” J. Mol. Liq., 256, 395-407, 2018.
 
[13]  Baysal, M., Bilge, K., Yılmaz, B., Papila, M. and Yürüm, Y., “Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal,” J. Environ. Chem. Eng., 6(2), 1702-1713, 2018.
 
[14]  Dulman, V. and Cucu-Man, S. M., “Sorption of some textile dyes by beech wood sawdust,” J. Hazard. Mater., 162(2-3), 1457-1464, 2009.
 
[15]  Liu, J., Wang, Z., Li, H., Hu, C., Raymer, P., and Huang, Q., “Effect of solid state fermentation of peanut shell on its dye adsorption performance,” Bioresour. Technol., 249, 307-314, 2018.
 
[16]  Arami, M., Limaee, N. Y., Mahmoodi, N. M. and Tabrizi, N. S., “Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies,” J. Colloid Interface Sci., 288(2), 371-376, 2005.
 
[17]  Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M. and Kim, D.-S., “Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent,” Ecotoxicol. Environ. Saf., 148, 601-607, 2018.
 
[18]  Zoungranan, Y., Ekou, L., Kouadio, K. and Brice, D., “Lichen Comme Bioindicateur de la Qualité de l’air de la Ville d’Abidjan en Éléments Traces Métalliques,” Eur. J. Sci. Res., 148(4), 501-511, 2018.
 
[19]  Ohnuki, T., Aoyagi, H., Kitatsuji, Y., Samadfam, M., Kimura Y., and William Purvis, O., “Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI),” J. Environ. Radioact., 77(3), 339-353, 2004.
 
[20]  Uluozlu, O. D., Sarı, A. and Tuzen, M., “Biosorption of antimony from aqueous solution by lichen (Physcia tribacia) biomass,” Chem. Eng. J., 163(3), 382-388, 2010.
 
[21]  Uluozlu, O. D., Sari, A., Tuzen, M. and Soylak, M., “Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass,” Bioresour. Technol., 99(8), 2972-2980, 2008.
 
[22]  Bingol, A., Aslan, A. and Cakici, A., “Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)),” J. Hazard. Mater., 161(2-3), 747-752, 2009.
 
[23]  Ekou, L., Zoungranan, Y., Ekou, T. and Kouadio, K. V. A., “Bioaccumulation Capacity of Cu and Fe on Lichen Parmotrema Dilatatum,” Eur. J. Sci. Res., vol. 145(3), 346-353, 2017.
 
[24]  Ekmekyapar, F., Aslan, A., Bayhan, Y. K. and Cakici, A., “Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm.,” J. Hazard. Mater., 137(1), 293-298, 2006.
 
[25]  Adria ́n Bonilla-Petriciolet; Didilia Ileana Mendoza-Castillo; Hilda Elizabeth Reynel-A ́vila., Adsorption Processes for Water Treatment and Purification, Springer. Me ́xico: Springer International Publishing, 2017.
 
[26]  De Franco, M. A. E., De Carvalho, C. B., Bonetto, M. M., Soares, R. de P. and Féris, L. A., “Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling,” J. Clean. Prod., 161, 947-956, 2017.
 
[27]  Valenciano, R., Aylón, E. and Izquierdo, M. T. A., “A Critical Short Review of Equilibrium and Kinetic Adsorption Models for VOCs Breakthrough Curves Modelling.”J.Adsorption Science & Technology, 33(10), 851-869, 2015.
 
[28]  Bohart, G. S. and Adams, E. Q., “Some aspects of the behavior of charcoal with respect to chlorine.,” J. Am. Chem. Soc., 42(3), 523-544, 1920.
 
[29]  Chu, K. H., “Fixed bed sorption: Setting the record straight on the Bohart-Adams and Thomas models,” J. Hazard. Mater., vol. 177, no. 1-3, pp. 1006-1012, May 2010.
 
[30]  Thomas, H. C., “Heterogeneous ion exchange in a flowing system.,” J Am Chem Soc, 66, 1466-1664, 1944.
 
[31]  Wathukarage, A., Herath, I., Iqbal, M. C. M. and Vithanage, M., “Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment,” Environmental Geochemistry and Health, 1-15, 2017.
 
[32]  Yoon Y. H. and Nelson J. H., “Application of gas adsorption kinetics: part 1: a theoretical model for respirator cartridge service time,” Am Ind Hyg Assoc J., 45, 509-516, 1984.
 
[33]  Lin, X. Li, R., Wen, Q., Wu, J., Fan, J., Jin, X., Qian, W., Liu, D., Chen, X., Chen, Y., Xie, J., Bai, J., and Ying, H “Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin,” Biotechnol. Bioprocess Eng., 18(2), 223-233, 2013.
 
[34]  Soto, M. L., Moure, A., Domínguez, H. and Parajó, J. C., “Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins,” J. Food Eng., 209, 52-60, 2017.
 
[35]  Liao, P. Zhan, Z., Dai, J., Wu, X., Zhang, W., Wang, K. and Yuan, S., “Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study,” Chem. Eng. J., 228, 496-505, 2013.
 
[36]  Chen, N., Zhang, Z., Feng, C., Li, M., Chen, R., and Sugiura, N., “Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud,” Desalination, 268(1-3), 76-82, 2011.
 
[37]  Kizito, S., Wu, S., Wandera, S. M., Guo, L. and Dong, R., “Evaluation of ammonium adsorption in biochar-fixed beds for treatment of anaerobically digested swine slurry: Experimental optimization and modeling,” Sci. Total Environ., 563-564, 1095-1104, 2016.
 
[38]  Zang, T. Cheng, Z., Lu, L., Jin, Y., Xu, X., Ding, W. and Qu, J., “Removal of Cr(VI) by modified and immobilized Auricularia auricula spent substrate in a fixed-bed column,” Ecol. Eng., 99, 358-365, 2017.
 
[39]  Xiang, H., Zhang, H., Liu, P. and Yan, Y., “Preparation of high purity propane from liquefied petroleum gas in a fixed bed by removal of sulfur and butanes,” Chem. Eng. J., 284, 224-232 2016.
 
[40]  Song, S.-T. Haua, Y-F., Samana, N., Joharib, K., Cheua, S-C., Konga, H. and Mat, H., “Process analysis of mercury adsorption onto chemically modified rice straw in a fixed-bed adsorber,” J. Environ. Chem. Eng., 4(2), 1685-1697, 2016.
 
[41]  Yaghmaeian, K., Moussavi, G. and Alahabadi, A., “Removal of amoxicillin from contaminated water using NH 4 Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration,” Chem. Eng. J., 236, 538-544, 2014.
 
[42]  Sancho, J. L. S., Rodríguez, A. R., Torrellas, S. Á. and Rodríguez, J. G., “Removal of an emerging pharmaceutical compound by adsorption in fixed bed column,” Desalin. Water Treat., 45, (1-3), 305-314, 2012.
 
[43]  Lemus, J., Moya, C., Gilarranz, M. A., Rodriguez, J. J. and Palomar, J., “Fixed-bed adsorption of ionic liquids onto activated carbon from aqueous phase,” J. Environ. Chem. Eng., vol. 5(6), 5347-5351, 2017.
 
[44]  Lemus, J., Palomar, J., Gilarranz, M. A. and Rodriguez, J. J., “On the Kinetics of Ionic Liquid Adsorption onto Activated Carbons from Aqueous Solution,” Ind. Eng. Chem. Res., 52(8), 2969-2976, 2013.
 
[45]  Liu, M., Hou, L., Yu, S., Xi, B., Zhao, Y., and Xia, X., “MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution,” Chem. Eng. J., 223, 678-687, 2013.
 
[46]  Meng, M. and al., “Highly efficient adsorption of salicylic acid from aqueous solution by wollastonite-based imprinted adsorbent: A fixed-bed column study,” Chem. Eng. J., 225, 331-339, 2013.
 
[47]  Zhang, X., Bai, B., Li Puma, G., Wang, H. and Suo, Y., “Novel sea buckthorn biocarbon SBC@β-FeOOH composites: Efficient removal of doxycycline in aqueous solution in a fixed-bed through synergistic adsorption and heterogeneous Fenton-like reaction,” Chem. Eng. J., 284, 698-707, 2016.
 
[48]  Dubey, S. P., Dwivedi, A. D., Lee, C., Kwon, Y.-N., Sillanpaa, M., and Ma, L. Q., “Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs,” J. Ind. Eng. Chem., 20(3), 1126-1132, 2014.