[1] | Wang, D. and Hejazi, M., “Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States,” Water Resources Research, 47. W00J12. 2011. |
|
[2] | Mwangi, H.M., Julich, S., Patil, S.D., McDonald, M.A. and Feger, K. “Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya,”Journal of Hydrology: Regional Studies, 5. 244-260. 2016. |
|
[3] | Araujo, J., Marsham, J., Rowell, D,. Zinyengere, N., Ainslie, A., Clenaghan, A., Cornforth, R., De Giusti, G., Evans, B., Finney, D., Lapworth, D., Macdonald, D., Petty, C., Seaman, J., Semazzi, F., Way, C., “Africa’s Climate Helping Decision-Makers Make Sense of Climate Information,” 2016. www.futureclimateafrica.org. |
|
[4] | Jansen, H., Hengsdijk, H., Legesse, D., Ayenew, T., Hellegers, P. and Spliethoff, P., “Land and water resources assessment in the Ethiopian Central Rift Valley”. Alterra-rapport 1587, Wageningen University, The Netherlands. 2007, ISSN 1566-7197. |
|
[5] | Ye, X., Zhang, Q., Liu, J., Li, X. and Xu, C., “Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China,” Journal of Hydrology, 494. 83-95. 2013. |
|
[6] | Jingjing, F., Qiang, H. and Dengfeng, L., “Identification of impacts of climate change and direct human activities on streamflow in Weihe River Basin in Northwest China,” Int J Agric & Biol Eng., 10 (4). 119-129. 2017. |
|
[7] | Zhao, J., Huang, S., Huang, Q., Wang, H. and Leng, G., “Detecting the Dominant Cause of Streamflow Decline in the Loess Plateau of China Based onthe Latest Budyko Equation,” Water, 10 (1277). 2018. |
|
[8] | Roderick, M.L. and Farquhar, G.D., “A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties,” Water Resources Research, 47. W00G07. 2011. |
|
[9] | Sun, Y., Tian F., Yang, L. and Hu, H., “Exploring the spatial variability of ontributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods,” Journal of Hydrology, 508. 170-180. 2014. |
|
[10] | Zhang, Y., Engel, B., Ahiablame, L. and Liu, J., “Impacts of Climate Change on Mean Annual Water Balance for Watersheds in Michigan, USA,” Water, 7. 3565-3578. 2015. |
|
[11] | Pan, S., Liu, D., Wang, Z., Zhao, Q., Zou, H., Hou, Y., Liu, P. and Xiong, L., “Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios,” Water, 9. 475, 2017. |
|
[12] | Halcrow, “Rift Valley Lakes Basin Integrated Resources Development Master Plan Study Project. Draft Phase 2 Report. Ministry of Water Resource, Ethiopia.” 2008. |
|
[13] | Shumet, A.G. and Mengistu, K.T., “Assessing the Impact of Existing and Future Water Demand on Economic and Environmental Aspects (Case Study from Rift Valley Lake Basin: Meki-Ziway Sub Basin), Ethiopia.,” International Journal of Waste Resources, 6 (:2). 2016. |
|
[14] | Graichen, K., “Environmental Policy Review 2011: Lake Water Management in three Ethiopian Rift Valley Watersheds.” 2011. |
|
[15] | Getnet, M., Hengsdijk, H. and van Ittersum, M., “Disentangling the impacts of climate change, land use change and irrigation on the Central Rift Valley water system of Ethiopia,” Agricultural Water Management, 137. 104-115. 2014. |
|
[16] | Yohannes, H., Mohammed, A., & Elias, E., “Land Use/Land Cover Dynamics and Its Impact on Biodiversity Resources in the Abijata Shalla National Park, Central Rift Valley Lakes Region, Ethiopia,” Environ Sci Ind J, 13, 152. 2017. |
|
[17] | Ayenew, T., Becht, R., van Lieshout, A., Gebreegziabher, Y., Legesse, D. and Onyando, J., “Hydrodynamics of topographically closed lakes in the Ethio-Kenyan Rift: The case of lakes Awassa and Naivasha. Journal of Spatial Hydrology,” 7(1). 2007. |
|
[18] | Tigist, T., “Water Resources Utilization and Its Related Effects: Lake Abiyata and the Surrounding,” MSc Thesis, Addis Ababa University. 2009. |
|
[19] | Mulugeta, D., Diekkrüger, B. and Roehrig, J., “Characterization of Water Level Variability of the Main Ethiopian Rift Valley Lakes,” Journal of Hydrology, 3 (1). 2015. |
|
[20] | Legesse, D., Vallet Coulomb, C. and Gasse, F., “Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study of South Central Ethiopia,” Journal of Hydrology, 275. 67-85. 2003. |
|
[21] | Lijalem, Z.A.; Roehrig, J.; Dilnesaw, A.C., “Climate Change Impact on Lake Ziway Watershed Water Availability, Ethiopia,” Available online: http://www.uni-siegen.de/zew/publikationen/volume0607/zeray.pdf (Accessed on 10/05/2017). |
|
[22] | Abraham, T., Woldemicheal, A., Muluneh, A. and Abate, B., “Hydrological Responses of Climate Change on Lake Ziway Catchment, Central Rift Valley of Ethiopia,” Journal of Science & Climatic Change, 9,6. 2018. |
|
[23] | Gadissa, T., Nyadawa, M., Behulu, F. and Mutua, B., “The Effect of Climate Change on Loss of Lake Volume: Case of Sedimentation in Central Rift Valley Basin, Ethiopia,” Hydrology, 5, 67. 2018. |
|
[24] | Dooge, J.C.I., Bruen, M. and Parmentier, B., “A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation,” Advances in Water Resources, 2. 153-163. 1999. |
|
[25] | Chang, J., Zhang, H.,Wang, Y. and Zhu, Y., “Assessing the impact of climate variability and human activities on streamflow variation,” Hydrol. Earth Syst. Sci., 20. 1547-1560. 2016. |
|
[26] | Subedi, A. and Chávez, J.L., “Crop Evapotranspiration (ET) Estimation Models: A Review and Discussion of the Applicability and Limitations of ET Methods,” Journal of Agricultural Science, 7, 6. 2015. |
|
[27] | Blanco, I.M., “Modeling Climate Change Impacts on Hydrology and Water Resources: Case Study Rio Conchos Basin,” PhD Dissertation, The University of Texas at Austin. 2011. |
|
[28] | Choudhury, B.J.,” Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model,” Journal of Hydrology, 216. 99-110. 1999. |
|
[29] | Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B, “Assessment of Catchment Water Resources Availability under Projected Climate Change Scenarios and Increased Demand in Central Rift Valley Basin,” In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation; Melesse, A.M., Abtew, W., Senay, G., Eds. (in press). |
|
[30] | Teutschbein, C. and Seibert, J., “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,” Journal of Hydrology, 456-457. 12-29. 2012. |
|
[31] | Themeßl, M.J.; Gobiet, A.; Heinrich, G., “Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal,” Clim. Chang., 112, 449-468. 2012. |
|
[32] | Lafon, T.; Dadson, S.; Buys, G.; Prudhomme, C., “Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods,” Int. J. Climatol., 33, 1367-1381. 2013. |
|
[33] | Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C., “Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China,” Hydrol. Earth Syst. Sci., 19, 2547-2559. 2015. |
|
[34] | Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Makurira, H.; Reggiani, P., “Bias correction schemes for CMORPH satellite rainfall estimates in the Zambezi River Basin,” Hydrol. Earth Syst. Sci. Discuss., 2016. |
|
[35] | Desta, H. and Lemma, B. “SWAT based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia,” Journal of Hydrology: Regional Studies, 13, 122-137. 2017. |
|
[36] | Seyoum, T.; Koch, M. SWAT—Hydrologic Modeling and Simulation of Inflow to Cascade Reservoirs of the Semi-Ungaged Omo-Gibe River Basin, Ethiopia. Available online: http://www.uni-kassel.de/fb14/geohydraulik/koch/paper/2013/Koblenz/Teshome/Gibe_Paper.pdf (Accessed on 11/03/2018). |
|
[37] | Kasei, R.A., “Modelling impacts of climate change on water resources in the Volta Basin, West Africa,” PhD dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn. 2009. |
|
[38] | Huang, Y., Wang, H., Xiao, W.H., Chen, L.H., Zhou, Y.Y., Song, X.Y. and Wang, H.J., “Contributions of climate change and anthropogenic activities to runoff change in the Hongshui River, Southwest China,” IOP Conf. Series: Earth and Environmental Science 191, 012143. 2018. |
|
[39] | Shanshan, H., Changming, L., Hongxing, Z., Zhonggen, W. and Jingjie, Y., “Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake.,” J. Geogr. Sci., 22 (5). 895-905. 2012. |
|
[40] | Wang, J., Gao, Y. and Wang, S., “Assessing the response of runoff to climate change and human activities for a typical basin in the Northern Taihang Mountain, China,” J. Earth Syst. Sci., 127:37. 2018. |
|