[1] | Bruno, V., & Shin, H. S. 2015. Capital flows and the risk-taking channel of monetary policy. Journal of Monetary Economics, 71, 119-132. |
|
[2] | Black, L., Correa, R., Huang, X., & Zhou, H. 2016. The systemic risk of European banks during the financial and sovereign debt crises. Journal of Banking & Finance, 63, 107-125. |
|
[3] | Peia, O., & Roszbach, K. 2015. Finance and growth: time series evidence on causality. Journal of Financial Stability, 19, 105-118. |
|
[4] | Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., & Stanley, H. E. 2015. Partial correlation analysis: Applications for financial markets. Quantitative Finance, 15(4), 569-578. |
|
[5] | Briesacher, B. A., Madden, J. M., Zhang, F., Fouayzi, H., Ross-Degnan, D., Gurwitz, J. H., & Soumerai, S. B. 2015. Did Medicare Part D Affect National Trends in Health Outcomes or Hospitalizations?: A Time-Series Analysis. Annals of internal medicine, 162(12), 825-833. |
|
[6] | SHEN, J. C., Lei, L. U. O., Li, L. I., JING, Q. L., OU, C. Q., YANG, Z. C., & CHEN, X. G. 2015. The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou, China, 2006-2014: a time-series analysis.Biomedical and Environmental Sciences, 28(5), 321-329. |
|
[7] | Pogorelenko, N., Lyashenko, V. and Ahmad, M. 2016 Wavelet Coherence as a Research Tool for Stability of the Banking System (The Example of Ukraine). Modern Economy, 7, 955-965. |
|
[8] | Hosseinioun, N. 2016 Forecasting Outlier Occurrence in Stock Market Time Series Based on Wavelet Transform and Adaptive ELM Algorithm. Journal of Mathematical Finance, 6, 127-133. |
|
[9] | Chen, W. Y., Wen, M. J., Lin, Y. H., & Liang, Y. W. 2016. On the relationship between healthcare expenditure and longevity: evidence from the continuous wavelet analyses. Quality & Quantity, 50(3), 1041-1057. |
|
[10] | Lyashenko, V., Matarneh, R., & Deineko, Z. V. 2016. Using the Properties of Wavelet Coefficients of Time Series for Image Analysis and Processing. Journal of Computer Sciences and Applications, 4(2), 27-34. |
|
[11] | Abry P. The multiscale nature of network traffic: discovery analysis and modeling / P. Abry, R. Baraniuk, P. Flandrin // IEEE Signal Processing Magazine. 2002. № 4 (2). Р. 5-18. |
|
[12] | Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion / P. Flandrin // IEEE Transactions on Information Theory. 1992. Vol. 38. P. 910-917. |
|
[13] | Kirichenko, L., Radivilova, T., & Deineko, Zh. Comparative Analysis for Estimating of the Hurst Exponent for Stationary and Nonstationary Time Series. Information Technologies & Knowledge. – Kiev: ITHEA, 2011. Vol. 5. № 1. P. 371-388. |
|
[14] | Lyashenko, V., Deineko, Z., & Ahmad, A. 2015. Properties of wavelet coefficients of self-similar time series. International Journal of Scientific and Engineering Research, 6(1), 1492-1499. |
|
[15] | Abry, P., Flandrin, P., Taqqu, M. S., & Veitch, D. 2003. Self-similarity and long-range dependence through the wavelet lens. Theory and applications of long-range dependence, 527-556. |
|
[16] | Alvarez-Ramirez, J., Echeverria, J. C., & Rodriguez, E. 2008. Performance of a high-dimensional R/S method for Hurst exponent estimation. Physica A: Statistical Mechanics and its Applications, 387(26), 6452-6462. |
|
[17] | Cajueiro, D. O., & Tabak, B. M. 2005. The rescaled variance statistic and the determination of the Hurst exponent. Mathematics and Computers in Simulation, 70(3), 172-179. |
|
[18] | Wang, G., Antar, G., & Devynck, P. 2000. The Hurst exponent and long-time correlation. Physics of Plasmas (1994-present), 7(4), 1181-1183. |
|
[19] | Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., & Ninot, G. 2006. Fractal analyses for ‘short’time series: a re-assessment of classical methods. Journal of Mathematical Psychology, 50(6), 525-544. |
|
[20] | Esposti, F., Ferrario, M., & Signorini, M. G. 2008. A blind method for the estimation of the Hurst exponent in time series: theory and application. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1. |
|