American Journal of Rural Development
ISSN (Print): 2333-4762 ISSN (Online): 2333-4770 Website: https://www.sciepub.com/journal/ajrd Editor-in-chief: Chi-Ming Lai
Open Access
Journal Browser
Go
American Journal of Rural Development. 2020, 8(1), 37-52
DOI: 10.12691/ajrd-8-1-5
Open AccessArticle

Trend Analysis of Hydro-climatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa

H. Djan’na Koubodana1, 2, , Julien Adounkpe1, Moustapha Tall1, 3, Ernest Amoussou4, Kossi Atchonouglo2 and Muhammad Mumtaz5

1West Africa Science Service Centre on Climate change and Adapted Land Use, WASCAL-Climate Change and Water Resources, University of Abomey Calavi, 03 BP 526 Cotonou, Benin

2Faculty of Sciences, University of Lomé, Po. Box 1515 Lomé, Togo

3Laboratoire de Physique de l'Atmosphère et de l'Océan, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5085, Dakar, Senegal

4Laboratoire Pierre PAGNEY, Climat, Eau, Ecosystème et Développement (LACEEDE), 03 BP1122, Cotonou, Bénin

5Department of Management Sciences, the University of Haripur, Pakistan

Pub. Date: June 09, 2020

Cite this paper:
H. Djan’na Koubodana, Julien Adounkpe, Moustapha Tall, Ernest Amoussou, Kossi Atchonouglo and Muhammad Mumtaz. Trend Analysis of Hydro-climatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa. American Journal of Rural Development. 2020; 8(1):37-52. doi: 10.12691/ajrd-8-1-5

Abstract

Climate change impacts considerably on water balance components and needs to be evaluated through trend analysis or climate models scenarios extremes. The objective of this paper is to perform non-parametric Mann Kendall (MK) trend analysis on historical hydro-climatic data (1961-2016), to validate an ensemble climate model and to compute temperature and rainfall extremes indices. The climate indices are evaluated using MK test and annual trend analysis for two future scenarios (2020- 2045) over Mono River Basin (MRB) in Togo. Results show positive and negative trends of hydro-climatic data over MRB from 1961 to 2016. The average temperature increases significantly in most of the stations while a negative non-significant trend of rainfall is noticed. Meanwhile, the discharge presents a significant seasonal and annual trend Corrokope, Nangbéto and Athiémé gauge stations. Validation of the ensemble climate models reveals that the model under-estimates observations at Sokode, Atkakpamé and Tabligbo stations, however linear regression and spatial correlation coefficients are higher than 0.6. Moreover, the percentage of bias between climate model and observations are less than 15% at most of the stations. Finally, the computation of extreme climate indices under RCP4.5 and RCP8.5 scenarios shows a significant annual trend of some extreme climate indices of rainfall and temperature at selected stations between 2020 and 2045 in the MRB. Therefore, relevant governmental politics are needed to elaborate strategies and measures to cope with projected climate changes impacts in the country.

Keywords:
trend analysis extremes indices climate change ETCCDI

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; Core Writing Team, R.K.P. and L.A.M. (eds.)]., Ed.; IPCC, Geneva, Switzerland, 2014.
 
[2]  Koubodana, H.D. Mecanismes de connexions entre les modes de varaibilités internannuelle equatorial et meridien de l’Atlantique tropical, These de Master, Chaire Internationale en Physique Mathématique et Applications (CIPMA-Chaire UNESCO), Université d’Abomey-Calavi (UAC), Benin, Soutenu en Octobre 2015, 2015.
 
[3]  Yan, T.; Bai, Z. Spatial and Temporal Changes in Temperature, Precipitation, and Streamflow in the Miyun Reservoir Basin of China. Water 2017, 9, 78.
 
[4]  Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G. Rainfall trends in Nigeria , 1901 - 2000. J. Hydrol. 2011, 411, 207-218.
 
[5]  Oguntunde, P.G.; Friesen, J.; Giesen, N. Van De; Savenije, H.H.G. Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Phys. Chem. Earth, Parts A/B/C 2006, 31, 1180-1188.
 
[6]  Yabi, I.; Afouda, F. Extreme rainfall years in Benin ( West Africa ). Quat. Int. 2012, 262, 39-43.
 
[7]  Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202-216.
 
[8]  Regh, T.; Bossa, A.Y.; Diekkrüger, B. Scenario-based simulations of the impacts of rainfall variability and management options on maize production in Benin. African J. Agric. Res. 2014, 9, 3393-3410.
 
[9]  Nicholson, S.E. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 2013, 32 pages.
 
[10]  Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. K., Tignor, M., Allen, SK, Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, PM, Eds 2013.
 
[11]  Navarro-Racines, C.E.; Tarapues-Montenegro, J.E.; Ramírez-Villegas, J.A. Bias-correction in CCAFS Climate poral: Description of methodologies; Cali, Colombia., 2015;
 
[12]  Berg, P.; Feldmann, H.; Panitz, H.-J. Bias correction of high resolution regional climate model data. J. Hydrol. 2012, 448-449, 80-92.
 
[13]  Maraun, D. Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. J. Clim. 2013, 26, 2137-2143.
 
[14]  Haerter, J.O.; Hagemann, S.; Moseley, C.; Piani, C. Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci. 2011, 15, 1065-1079.
 
[15]  Berg, P.; Feldmann, H.; Panitz, H. Bias correction of high resolution regional climate model data. J. Hydrol. 2012, 448-449, 80-92.
 
[16]  Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456-457, 12-29.
 
[17]  Onyutha, C.; Tabari, H.; Rutkowska, A.; Nyeko-Ogiramoi, P.; Willems, P. Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. J. hydro-environment Res. 2016, 12, 31-45.
 
[18]  Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’ s slope estimator statistical tests in Serbia. Glob. Planet. Change 2013, 100, 172-182.
 
[19]  Gosling, S.N.; Taylor, R.G.; Arnell, N.W.; Todd, M.C. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sci. 2011, 15, 279-294.
 
[20]  Diallo, I.; Sylla, M.B.; Camara, M.; Gaye, A.T. Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor. Appl. Climatol. 2012, 1-12.
 
[21]  Amoussou, E.; Osseni, A.A.; Totin, H.S. V; Lange, U.; Preuss, S. Hydroclimatic variability and flood risk on Naglanou and Akissa forests areas in Mono River Delta (West Africa). Int. J. Biodivers. Conserv. 2017, 9, 212-223.
 
[22]  Lawin, A.E.; Lamboni, B.; Manirakiza, C.; Kamou, H. Future Extremes Temperature: Trends and Changes Assessment over the Mono River Basin, Togo (West Africa). J. Water Resour. Prot. 2019, 11, 82-98.
 
[23]  Lawin, A.E.; Hounguè, N.R.; Biaou, C.A.; Badou, D.F. Statistical Analysis of Recent and Future Rainfall and Temperature Variability in the Mono River Watershed (Benin, Togo). Climate 2019, 7, 8.
 
[24]  Zhang, X.; Feng, Y.; Chan, R. Introduction to RClimDex v1 . 9; Climate Research Division Environment Canada Downsview, Ontario Canada, 2018.
 
[25]  Robson, A.J.; Kundzewicz, Z.W.; Robson, A.J. Change detection in hydrological records - a review of the methodology. Hydrol. Sci. Journal-journal Des Sci. Hydrol. 2004, 49, 7-19.
 
[26]  Wilson, D.; Hisdal, H.; Lawrence, D. Has streamflow changed in the Nordic countries? - Recent trends and comparisons to hydrological projections. J. Hydrol. 2010, 394, 334-346.
 
[27]  Adeyeri, O.E.; Lawin, A.E.; Laux, P.; Ishola, K.A.; Ige, S.O. Analysis of climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: Past and future occurrences. Weather Clim. Extrem. 2019, 23, 21.
 
[28]  Houngue, R.; Lawin, E.; Moumouni, S.; Afouda, A.A. Change in Climate Extremes and Pan Evaporation Influencing Factors over Ouémé Delta in Bénin. Climate 2019, 7, 1-22.
 
[29]  PCCP PROGRAMME PCCP -From Potential Conflict to Cooperation Potential: cas du basin du Mono (Togo-Benin); Lomé-Togo, 2008;
 
[30]  Amoussou, E. Variabilité pluviométrique et dynamique hydro-sédimentaire du bassin versant du complexe fluvio-lagunaire Mono-Ahémé-Couffo, These de doctorat de l’Université de Bourgogne - Centre de Recherches de Climatologie (CRC) CNRS - UMR 5210, soutenu le 11 mai 2010, 2010.
 
[31]  Amoussou, E.; Tramblay, Y.; Totin, H.S. V; Mahé, G.; Camberlin, P. Dynamique et modélisation des crues dans le bassin du Mono à Nangbéto (Togo / Bénin). Hydrol. Sci. J. 2014, 59, 2060-2071.
 
[32]  Koubodana, H.D.; Diekkrüger, B.; Näschen, K.; Adounkpe, J.; Atchonouglo, K. Impact of the Accuracy of Land Cover Data Sets on the Accuracy of Land Cover Change Scenarios in the Mono River Basin, Togo, West Africa. Int. J. Adv. Remote Sens. GIS 2019, 8, 3073-3095.
 
[33]  FAO FAO Statistical Yearbook 2012 Africa: Food and Agriculture; Food and Agriculture Organization of the United Nations Regional Office for Africa Accra, 2012; ISBN 9789251074268.
 
[34]  SAWES Etudes relatives a la promotion de trois (3) nouvelles organisations de bassins transfrontaliers en Afrique de l’ouest Cas du schéma du Bassin du Mono; Aougadougou, Burkina Faso, 2011;
 
[35]  Ficchì, A.; Perrin, C.; Andréassian, V. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events. J. Hydrol. 2016, 538, 454-470.
 
[36]  Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225-230.
 
[37]  Tabari, H.; Aeini, A.; Talaee, P.H.; Some, B.S. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol. Process. 2012, 26, 500-512.
 
[38]  Xie, H.; Longuevergne, L.; Ringler, C.; Scanlon, B.R. Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol. Earth Syst. Sci. 2012, 16, 3083-3099.
 
[39]  Djaman, K.; Sharma, V.; Daran, R.R.; Koudahe, K.; Irmak, S.; Amouzou, K.A.; Rudnick, D.R.; Sogbedji, J.M. Spatial and Temporal Variation in Precipitation in Togo. Int. J. Hydrol. 2017, 1, 1-10.
 
[40]  Wu, T.; Song, L.; Li, W.; Wang, Z.; Zhang, H.; Xin, X.; Zhang, Y.; Zhang, L.; Li, J.; Wu, F. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 2014, 28, 34-56.
 
[41]  Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572-597.
 
[42]  Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845.
 
[43]  Heuzé, C.; Heywood, K.J.; Stevens, D.P.; Ridley, J.K. Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 2013, 40, 1409-1414.
 
[44]  Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082-1089.
 
[45]  Memarian, H.; Balasundram, S.K.; Talib, J.B.; Sood, A.M.; Abbaspour, K.C. Trend analysis of water discharge and sediment load during the past three decades of development in the Langat basin, Malaysia Trend analysis of water discharge and sediment load during the past. Hydrol. Sci. J. 2012, 57, 1207-1222.
 
[46]  Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates-the Excel template application MAKESENS; Finnish Meteorological Institute (FMI): Helsinki, Finland, 2002;
 
[47]  Akpovi, K.; Antwi, E.O.; Kabo-bah, A. Impacts of Rainfall Variability , Land Use and Land Cover Change on Stream Flow of the Black Volta. Hydrology 2016, 3, 1-24.
 
[48]  Attogouinon, A.; Lawin, A.E.; M’Po, Y.N.T.; Houngue, R. Extreme Precipitation Indices Trend Assessment over the Upper Oueme River Valley-(Benin). Hydrology 2017, 4, 36.
 
[49]  Rana, A.; Foster, K.; Bosshard, T.; Olsson, J.; Bengtsson, L. Regional Studies Impact of climate change on rainfall over Mumbai using Distribution-based Scaling of Global Climate Model projections. J. Hydrol. Reg. Stud. 2014, 1, 107-128.
 
[50]  Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 245-259.
 
[51]  Kendall, M.G. Rank Correlation Methods, Charles Griffin, London (1975). Google Sch. 1975.
 
[52]  Sen, A.K.; Niedzielski, T. Statistical Characteristics of Riverflow Variability in the Odra River Basin , Southwestern Poland. Polish J. environement Stud. 2010, 19, 387-397.
 
[53]  Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons, Inc, 605 Third Avenue, New York NY 10158M12. (212)850-6011, Fax (212) 850-6008, 1987;
 
[54]  Anderson, M.G.; Bates, P.D. Model Validation. Perspect. Hydrol. Sci. John Wiley Sons 2001.
 
[55]  Christensen, J.H.; Kuhry, P. High‐resolution regional climate model validation and permafrost simulation for the East European Russian Arctic. J. Geophys. Res. Atmos. 2000, 105, 29647-29658.
 
[56]  Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T.L.; Liew, M.W. Van; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885-900.
 
[57]  Gudmundsson, L.; Seneviratne, S.I. Observation-based gridded runoff estimates for Europe (E-RUN version 1.1). Earth Syst. Sci. Data 2016, 8, 279-295.
 
[58]  Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Al., E.; et al. Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1-39.
 
[59]  Martinez-Casanovas, A. A spatial information technology approach for the mapping and quantification of gully erosion. Catena 2003, 50, 293-308.
 
[60]  Laurent, H.; Jobard, I.; Toma, A. Validation of satellite and ground based estimates of precipitation over the Sahel. Atmos. Res. 1998, 47-48, 651-670.
 
[61]  Dashkhuu, D.; Pil, J.; Ahn, J.; Lee, W. Long-term trends in daily temperature extremes over Mongolia. Weather Clim. Extrem. 2015, 8, 26-33.
 
[62]  Halimatou, T.; Kakifa, T.; Kyei-baffour, N. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Segou in Mali from 1961-2014. Weather Clim. Extrem. J. 2017, 18, 8-16.
 
[63]  Oguntunde, P.G.; Abiodun, B.J. The impact of climate change on the Niger River Basin hydroclimatology, West Africa. Clim. Dyn. 2013, 40, 81-94.
 
[64]  Kasei, R.; Diekkrüger, B.; Leemhuis, C. Drought frequency in the Volta Basin of West Africa. Sustain. Sci. 2010, 5, 89-97.
 
[65]  Reichler, T.; Kim, J. Uncertainties in the climate mean state of global observations , reanalyses , and the GFDL climate model. J. Geophys. Res. 2008, 113, 1-13.
 
[66]  Lahsen, M. Seductive Simulations? Uncertainty Distribution Around Climate Models. Soc. Stud. Sci. 2005, 35, 895-922.
 
[67]  New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. 2006, 111, 1-11.
 
[68]  Akinsanola, A.A.; Zhou, W. Projections of West African summer monsoon rainfall extremes from two CORDEX models. Clim. Dyn. 2018, 12pp.