American Journal of Public Health Research
ISSN (Print): 2327-669X ISSN (Online): 2327-6703 Website: https://www.sciepub.com/journal/ajphr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Public Health Research. 2023, 11(6), 211-218
DOI: 10.12691/ajphr-11-6-6
Open AccessMini Review

Electrostatic Strategies in Public Health: Current Uses and Future Innovations for Controlling Biological and Environmental Threat

Koji Kakutani1, Yoshinori Matsuda2, , Yoshihiro Takikawa3 and Hideyoshi Toyoda4

1Pharmaceutical Research and Technology Institute, and Anti-Aging Centers, Kindai University, Osaka 577-8502, Japan

2Laboratory of Phytoprotection Science and Technology, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan

3Plant Center, Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan

4Research Association of Electric Field Screen Supporters, Nara 631-8505, Japan; a 631-8505, Japan

Pub. Date: December 06, 2023

Cite this paper:
Koji Kakutani, Yoshinori Matsuda, Yoshihiro Takikawa and Hideyoshi Toyoda. Electrostatic Strategies in Public Health: Current Uses and Future Innovations for Controlling Biological and Environmental Threat. American Journal of Public Health Research. 2023; 11(6):211-218. doi: 10.12691/ajphr-11-6-6

Abstract

The following review aims to introduce electrostatic techniques for addressing public health issues caused by both living (biotic) and non-living (abiotic) agents. Biotic agents include viruses present in droplets, airborne fungal spores, pollen, and flying insect pests like mosquitoes and houseflies. The abiotic agent discussed is tobacco smoke. Electrostatic techniques involve creating electric fields between charged conductors, such as a metal rod, metal net, and spiked perforated metal plate, and a grounded metal net. These instruments generate two types of electric fields: static electric fields and dynamic electric fields. Static electric fields are utilized to capture or repel the target agents, while dynamic electric fields are employed to eliminate them through arc discharge exposure. Another application of dynamic electric fields is corona discharge generation, beneficial for trapping fine particles from tobacco smoke and viral particles carried by droplet transmission. This is achieved through the production of negative ions and ionic wind in the electric field. The electric fields produced serve as spatial barriers, preventing harmful agents from entering human living spaces by capturing, repelling, and killing them. Notably, the devices proposed in this review have a simple structure, enabling general readers to construct them inexpensively using common materials or modify them as needed. This review provides basic information and instructions on electrostatic techniques, serving as an introduction to new research in public health issues for readers who may not be familiar with technical aspects.

Keywords:
arc discharge attractive force corona discharge electric field negative ionization spatial barrier

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Kima K.H., Kabirb, E. and Kabirc, S, “A review on the human health impact of airborne particulate matter”, Environment International, 74. 136–143. 2015.
 
[2]  Schlesinger R. B, “The Health Impact of Common Inorganic Components of Fine Particulate Matter (PM2.5) in Ambient Air: A Critical Review”, Inhalation Toxicology, 19. 811-832. 2007.
 
[3]  Dinas, P. C., Koutedakis, Y. and Flouris, A. D, “Effects of active and passive tobacco cigarette smoking on heart rate variability”, International of Journal of Cardiology, 163. 109–115. 2013.
 
[4]  Cui, H., Gong, T. T., Liu, C.X. and Wu, Q. J, “Associations between passive maternal smoking during pregnancy and preterm birth: Evidence from a meta-analysis of observational studies”, PLoS ONE, 11. e0147848. 2016.
 
[5]  Ministry of the Environment Government of Japan Website. Available online: https://www.env.go.jp/en/headline/53.html/ (accessed on 3 December 2016).
 
[6]  Kaneko, Y., Motohashi, Y., Nakamura, H., Endo, T. and Eboshida, A, “Increasing prevalence of Japanese cedar pollinosis: A meta-regression analysis”, International Archives Allergy and Immunology, 136. 365–371. 2005.
 
[7]  Molina-Cruz, A., Zilversmit, M. M., Neafsey, D. E., Hartl, D. L. and Barillas-Mury, C, “Mosquito vectors and the globalization of Plasmodium falciparum malaria”. Annual Review of Genetics, 50. 447-465. 2016.
 
[8]  Lourens, G. B. and Ferrell, D. K, Lymphatic filariasis. Nursing Clinics North America, 54. 181-192. 2019.
 
[9]  Li, L., Fang, Z., Zhou, H., Tang, Y., Wang, X., Liang, G. and Zhang, F, “Dengue risk forecast with mosquito vector: A multicomponent fusion approach based on spatiotemporal analysis”, Computational Mathematical Methods in Medicine, 2515432. 2022.
 
[10]  Auerswald, H., Maquart, P-O., Chevalier, V. and Boyer, S, “Mosquito vector competence for Japanese encephalitis virus”, Viruses, 13. 1154. 2021.
 
[11]  Boyer, S., Calvez, E., Chouin-Carneiro, T., Diawo Diallo, D. and Failloux, A-B, “An overview of mosquito vectors of Zika virus”, Microbes and Infection, 20. 646-660. 2018.
 
[12]  Cano, M. E., Marti, G. A., Alencar, J., Silva, S. O. F. and Micieli, M.V, “Categorization by score of mosquito species (Diptera: Culicidae) related to yellow fever epizootics in Argentina”, Journal of Medical Entomology, 59. 1766-1777. 2022.
 
[13]  Nkya, T. E., Akhouayri, I., Kisinza, W. and David, J-P, “Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects” Insect Biochemistry Molecular Biology, 43. 407-416. 2013.
 
[14]  Short, R., Gurung, R., Rowcliffe, M., Hill, N. and Milner-Gulland, E. J, “The use of mosquito nets in fisheries: A global perspective”, PLoS One, 13. e0191519. 2018.
 
[15]  Carnevale, P. and Gay, F, “Insecticide-treated mosquito nets”, Methods in Molecular Biology, 2013. 221-232. 2019.
 
[16]  Ahmad, A., Nagaraja, T. G. and Zurek, L, “Transmission of Escherichia coli O157:H7 to cattle by house flies”, Preventive Veterinary Medicine, 80. 74-81. 2007.
 
[17]  Russell, J. B. and Jarvis, G. N, “Practical mechanisms for interrupting the oral-fecal lifecycle of Escherichia coli”, Journal of Molecular Microbiology Biotechnology, 3. 265-272. 2001.
 
[18]  Alam, M. J. and Zurek, L, “Association of Escherichia coli O157:H7 with houseflies on a cattle farm”, Applied and Environmental Microbiology, 70. 7578-7580. 2004.
 
[19]  Mukherjee, A., Cho, S., Scheftel, J., Jawahir, S., Smith, K. and Diez-Gonzalez, F, “Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure”, Journal of Applied Microbiology, 101. 429-436. 2006.
 
[20]  Brandl, M. T, “Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce”, Applied and Environmental Microbiology, 74. 5285-5289. 2008.
 
[21]  Ibekwe, A.M., Grieve, C.M., Papiernik, S.K. and Yang, C.-H. “Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce”, Letters in Applied Microbiology, 49. 784-790. 2009.
 
[22]  Luo, Y., He, Q. and McEvoy, J. L, “Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing romaine and Iceberg lettuce”, Journal of Food Science, 75. M390-M397. 2010.
 
[23]  Wegner, H.E, Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed., Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., Eds, The Lakeside Press, New York, NY, USA, 2002, 42–43.
 
[24]  Toyoda, H., Kusakari, S., Matsuda, Y., Kakutani, K., Xu, L., Nonomura, T. and Takikawa, Y, Electric field screen structures. In An illustrated manual of electric field screens: their structures and functions, Toyoda, H. Ed, RAEFSS Publishing Department, Nara, Japan, 2019a, 9-15.
 
[25]  Jones, E.; Childers, R, Electric charge and electric field. In Physics, 3rd ed., McGraw-Hill, Boston, MA, USA, 2002, 495–525.
 
[26]  Griffith, W. T, Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics, Bruflodt, D., Loehr, B. S., Eds, McGraw-Hill, Bruflodt, New York, NY, USA, 2004, 232–252.
 
[27]  Toyoda, H., Kusakari, S., Matsuda, Y., Kakutani, K., Xu, L., Nonomura, T. and Takikawa, Y, Structure and functions of discharge-generating screens. In An illustrated manual of electric field screens: their structures and functions, Toyoda, H. Ed, RAEFSS Publishing Department, Nara, Japan, 2019b, 75-85.
 
[28]  Halliday, D., Resnick, R., Walker, J. Electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds, John Wiley & Sons, New York, NY, USA, 2005, 580–604.
 
[29]  Matsuda, Y., Ikeda, H., Moriura, N., Tanaka, N., Shimizu, K., Oichi, W., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K. and Toyoda, H, “A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew”, Phytopathology, 96. 967-974. 2006.
 
[30]  Shimizu, K., Matsuda, Y., Nonomura, T., Ikeda, H., Tamura, N., Kusakari, S., Kimbara, J. and Toyoda, H, “Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f. sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator”, Plant Pathology, 56. 987-997. 2007.
 
[31]  Takikawa, Y., Matsuda, Y., Kakutani, K., Nonomura, T., Kusakari, S., Okada, K., Kimbara, J., Osamura, K. and Toyoda, H, “Electrostatic insect sweeper for eliminating whiteflies colonizing host plants; a complementary pest control device in an electric field screen-guarded greenhouse”, Insects, 6. 442-454. 2015.
 
[32]  Matsuda, Y., Kakutani, K., Nonomura, T., Kimbara, J., Osamura, K., Kusakari, S. and Toyoda, H, “Safe housing ensured by an electric field screen that excludes insect-net permeating haematophagous mosquitoes carrying human pathogens”, Journal of Physics: Conference Series, 646. 0120021-0120024. 2015a.
 
[33]  Matsuda, Y., Nonomura, T., Kakutani, K., Takikawa, Y., Kimbara, J., Kasaishi, Y., Kusakari, S. and Toyoda, H, “A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies”, Crop Protection, 30. 155-162. 2011.
 
[34]  Katatani, A. and Mizuno, A, “Generation of ionic wind by using parallel located flat plates”, Journal of the Institute of Electrostatics Japan (in Japanese with English abstract), 34. 187-192. 2010.
 
[35]  Kakutani, K., Matsuda, Y., Nonomura, T., Takikawa, Y., Takami, T. and Toyoda, H, “A simple electrostatic precipitator for trapping virus particles spread via droplet transmission”, International Journal of Environmental Research and Public Health, 18. 4934. 2021.
 
[36]  Takikawa, Y., Matsuda, Y., Nonomura, T., Kakutani, K., Kusakari, S., Toyoda, H, “Electrostatic elimination of fine smoke particles by a newly devised air purification screen”, International Journal of Scientific Research Environmental Sciences, 5. 17-21. 2017a.
 
[37]  Takikawa, Y., Matsuda, Y., Nonomura, T., Kakutani, K., Kimbara, J., Osamura, K., Kusakari, S. and Toyoda, H, “Electrostatic guarding of bookshelves from mould-free preservation of valuable library books”, Aerobiologia, 30. 435-444. 2014.
 
[38]  Takikawa, Y., Matsuda, Y., Nonomura, T., Kakutani, K., Kusakari, S. and Toyoda, H, “An electrostatic-barrier-forming window that captures airborne pollen grains to prevent pollinosis”, International Journal of Environmental Research and Public Health, 14. 1-5. 2017b.
 
[39]  Cross, J. A. Dielectrophoresis. Electrostatics: Principles, Problems and Applications, De Barr, A. E. Ed, Adam Hilger, Bristol, USA, 1987, 269-276.
 
[40]  Matsuda, Y., Kakutani, K., Nonomura, T., Kimbara, J., Kusakari, S., Osamura, K. and Toyoda H, “An oppositely charged insect exclusion screen with gap-free multiple electric fields”, Journal of Applied Physics, 112. 116103. 2012.
 
[41]  Nonomura, T., Matsuda, Y., Kakutani, K., Kimbara, J., Osamura, K., Kusakari, S. and Toyoda, H, “An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy” European Journal of Plant Pathology, 134. 661-670. 2012.
 
[42]  Matsuda, Y., Nonomura, T., Kakutani, K., Kimbara, J., Osamura, K., Kusakari, S. and Toyoda, H, “Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy” Journal of Physics: Conference Series, 646. 0120031-0120034. 2015b.
 
[43]  Kakutani, K., Matsuda, Y., Haneda, K., Sekoguchi, D., Nonomura, T., Kimbara, J., Osamura, K., Kusakari, S. and Toyoda H, “An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements”, Journal of Electrostatics, 70. 207-211. 2012a (SD-screen).
 
[44]  Kakutani, K., Matsuda, Y., Haneda, K., Nonomura, T., Kimbara, J., Kusakari, S., Osamura, K. and Toyoda, H, “Insects are electrified in an electric field by deprivation of their negative charge”, Annals of Applied Biology, 160. 250-259. 2012b.
 
[45]  Kakutani, K., Matsuda, Y., Takikawa, Y., Nonomura, T., Okada, K., Shibao, M., Kusakari, S., Miyama, K. and Toyoda, H, “Electrocution of mosquitoes by a novel electrostatic window screen to minimize mosquito transmission of Japanese encephalitis viruses”, International Journal of Science and Research, 7. 47-50. 2018.
 
[46]  Kakutani, K., Matsuda, Y. and Toyoda, H, “A simple and safe electrostatic method for managing houseflies emerging from underground pupae”, Agronomy, 13. 310. 2023.
 
[47]  Burke, M., Odell, M., Bouwer, H. and Murdoch, A, “Electric fences and accidental death”, Forensic Science, Medicine and Pathology, 13. 196-208. 2017.
 
[48]  Matsuda, Y., Nonomura, N. and Toyoda, H, “Physical methods for electrical trap-and-kill fly traps using electrified insulated conductors”, Insects, 13. 253. 2022.
 
[49]  Newland, P. L., Hunt, E. and Sharkh, S. M, “Static electric field detection and behavioral avoidance in cockroaches”, Journal of Experimaental Biology, 211. 3682–3690. 2008.
 
[50]  Matsuda, Y., Nonomura, T., Toyoda, H, “Turkestan cockroaches avoid entering a static electric field upon perceiving an attractive force applied to antennae inserted into the field”, Insects, 12. 621. 2021.
 
[51]  Matsuda, Y., Takikawa, Y., Nonomura, T., Kakutani, K., Okada, K., Shibao, M., Kusakari, S., Miyama, K. and Toyoda, H, “A simple electrostatic device for eliminating tobacco sidestream to prevent passive smoking”, Instruments, 2. 13. 2018.
 
[52]  de Blay, F., Gherasim, A., Casale, T. B., Doyen, V. and Bernstein, D, “Which patients with asthma are most likely to benefit from allergen immunotherapy?” Journal of Allergy and Clinical Immunology, 149. 833-843. 2022.