[1] | Babuska, I., Vitasek, E., Prager, M. Numerical processes in differential equations. Wiley, New York, 1966. |
|
[2] | Bakhvalov, N.S., Vasil'eva, L.G. Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures (Russian) USSR Computational Mathematics and Mathematical Physics. 8, 1968, 241-249. |
|
[3] | Filon, L.N.G. On a quadrature formula trigonometric integrals // Proc. Roy. Soc. Edinburgh. 1928. Pp.38-47. |
|
[4] | Flinn, E.A. A modification of Filon’s method of numerical integration, J. Assoc. Comp. Mach. 7 (1960) 181-184. |
|
[5] | Havie, T. Remarks on an expansion for integrals of rapidly oscillation functions, BIT, 13 (1973) 16-29. |
|
[6] | Iserles, A., Nørsett, S.P. On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer Math 44: 755-772, 2004. |
|
[7] | Iserles, A., Nørsett, S.P. Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. A (2005) 461, 1383-1399. |
|
[8] | Levin, D. Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math., 67 (1996) 95-101. |
|
[9] | Melenk, J.M. On the convergence of Filon quadrature, Jour of Comp and Appl Math 234 (2010) 1692-1701. |
|
[10] | Milovanovic, G.V. Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures, Computers Math. Applic. Vol. 36, no. 8, (1998). 19-39. |
|
[11] | Milovanovic, G.V., Stanic, M.P. Numerical integration of highly oscillating functions // Analytic Number Theory, Approximation Theory, and Special Functions. Springer, 2014. Pp. 613-649. |
|
[12] | Novak, E., Ullrich, M., Wozniakowski, H. Complexity of oscillatory integration for univariate Sobolev space, Journal of Complexity, 31 (2015) 15-41. |
|
[13] | Olver, S. Numerical approximation of highly oscillatory integrals, PhD dissertation, University of Cambridge, 2008. |
|
[14] | Olver, Sh. Fast, numerically stable computation of oscillatory integrals with stationary points, BIT Numer Math (2010) 50: 149-171. |
|
[15] | Sard, A. Best approximate integration formulas; best approximation formulas, Am. J. Math. 71 (1949) 80-91. |
|
[16] | Shampine, L.F. Efficient Filon method for oscillatory integrals, Appl Math and Comp 221 (2013) 691-702. |
|
[17] | Shadimetov, Kh.M. The discrete analogue of the differential operator and its construction, Quest. Comput. Appl. Math., Tashkent, 1985, pp. 22-35 (2010). |
|
[18] | Shadimetov, Kh.M. Weight optimal cubature formulas in Sobolev's periodic space, (Russian) Siberian J. Numer. Math. -Novosibirsk, v.2, no. 2 (1999) 185-196. |
|
[19] | Sobolev, S.L. Introduction to the Theory of Cubature formulas. – Moscow: Nauka, (Russian) 1974-808 p. |
|
[20] | Sobolev, S.L. The coefficients of optimal quadrature formulas // Selected works of S.L. Sobolev. – Berlin: Springer, 2006).Pp. 561-566. |
|
[21] | Xu, Z., Milovanovic, G.V., Xiang, S. Efficient computation of highly oscillatory integrals with Henkel kernel, Appl. Math. and Comp. 261 (2015) 312-322. |
|