[1] | H.-G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer Verlag, New York, 1996. |
|
[2] | J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems(Revised Edition), World Scientific Publishing Co., Singapore, New Jersey, London, Hong Kong, 2012. |
|
[3] | P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Robust computational techniques for boundary layers, Chapman and Hall/ CRC, Boca Raton, 2000. |
|
[4] | G.I. Shishkin, Mesh approximation of singularly perturbed boundary value problems for systems of eliptic and parabolic equations, Comput. Maths. Math. Phys., 35 (1995) 429-446. |
|
[5] | S. Matthews, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, A parameter robust numerical method for a system of singularly perturbed ordinary differential equations, in: J.J.H. Miller, G.I. Shishkin, and L. Vulkov, editors, Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, New York, Nova Science Publishers, 2000, pp. 219-224. |
|
[6] | A. Tamilselvan, N. Ramanujam and V. Shanthi, A numerical method for singularly perturbed weakly coupled system of two second order ordinary differential equations with discontinuous source term, Journal of Computational and Applied Mathematics, 202 (2007) 203-216. |
|
[7] | M. Paramasivam, J.J.H. Miller, S. Valarmathi, Parameter-uniform convergence for a finite difference method for singularly perturbed linear reaction-diffusion system with discontinuous source terms, Internation Journal of Numerical Analysis and Modeling, 11 (2) (2014) 385-399. |
|
[8] | P. Das, S. Natesan, Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary value problems, Applied Mathematics and Computation, 249 (2014) 265-277. |
|
[9] | P. Das, S. Natesan, Higher-order parameter uniform convergent schemes for Robin type reaction-diffusion problems using adaptively generated grid, International Journal of Computational Methods, 9 (4) (2012). |
|
[10] | P. Das, S. Natesan, A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary value problems, Journal of Applied Mathematics and Computing 41 (2013) 447-471. |
|
[11] | R. Mythili Priyadharshini, N. Ramanujam, Uniformly-convergent numerical methods for a system of coupled singularly perturbed convection-diffusion equations with mixed type boundary conditions. Math. Model. Anal. 18 (5) (2013) 577-598. |
|
[12] | P. Mahabub Basha, V. Shanthi, A numerical method for singularly perturbed second order coupled system of convection-diffusion Robin type boundary value problems with discontinuous source term, Int. J. Appl. Comput. Math., 1 (3) (2015) 381-397. |
|
[13] | A.R. Ansari, A.F. Hegarty, Numerical solution of a convection-diffusion problem with Robin boundary conditions, Journal of Computational and Applied Mathematics, 156 (2003) 221-238. |
|
[14] | M.H. Protter and H.F. Weinberger, Maximum principles in Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967. |
|
[15] | T. Linß, N. Madden, An improved error estimate for a numerical method for a system of coupled singularly perturbed reaction-diffusion equations, Comput. Methods Appl. Math. 3 (2003) 417-423. |
|
[16] | P.A. Farrell, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Singularly perturbed differential equations with discontinuous source terms, in: J.J.H. Miller, G.I. Shishkin, L. Vulkov (Eds.), Proceedings of Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Lozenetz, Bulgaria, 1998, Nova Science Publishers, New York, USA, 2000, pp. 23-32. |
|
[17] | S. Matthews, Parameter robust numerical methods for a system of two coupled singularly perturbed reaction-diffusion equations, Master Thesis, School of Mathematical Sciences, Dublin City University, 2000. |
|
[18] | J.J.H. Miller, E. O’Riordan, G.I. Shishkin, S. Wang, A parameter-uniform Schwarz method for a singularly perturbed reaction-diffusion problem with an interior layer, Appl. Numer. Math. 35 (2000) 323-337. |
|
[19] | S. Chandra Sekhara Rao, S. Chawla, Interior layers in coupled system of two singularly perturbed reaction-diffusion equations with discontinuous source term, in: I. Dimov, I. Farago and L. Vulkov (Eds), Proceedings of 5th International Conference, Numerical Analysis and its Applications 2012, Lozenetz, Bulgaria, June 2012, LNCS 8236, 2013, pp. 445-453. |
|
[20] | C. de Falco, E. O’Riordan, Interior layers in a reaction-diffusion equation with a discontinuous diffusion coefficient, Int. J. Numer. Anal. Model., 7 (2010) 444-461. |
|
[21] | Z. Cen, A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Applied Mathematics and Computation, 169 (2005) 689-699. |
|