[1] | R. E. Bellman and J. Casti, Differential Quadrature and Long-Term Integration, Journal of Mathematical Analysis and Application, 34 (1971), 235-238. |
|
[2] | R. E. Bellman, B. G. Kashef and J. Casti, Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10 (1972), 40-52. |
|
[3] | C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978. |
|
[4] | F. Civan, and C. M. Sliepcevich, Differential quadrature for multidimensional problems, J. Math. Anal. Appl., 101 (1984), 423-443. |
|
[5] | H. Du, and M. K. Lin, Application of differential quadrature to vibration analysis, J. Sound Vib. 181 (1995), 279-293. |
|
[6] | P. A. Farrell, A. F. Hegarty, J.J.H. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational techniques for Boundary Layers, Chapman & Hall/CRC Press, 2000. |
|
[7] | 7. M. K. Kadalbajoo, and V. K. Aggarwal, Fitted mesh B-spline method for solving a class of singular singularly perturbed boundary value problems, Int. J. Computer Mathematics, vol. (82), 1, (2005), 67-76. |
|
[8] | J. Li, A Computational Method for Solving Singularly Perturbed Two-Point Singular Boundary Value Problem, Int. Journal of Math. Analysis, Vol. 2, (2008), no. 22, 1089-1096. |
|
[9] | J. J. H. Miller, E. O. Riordan and G. I. Shishkin, Fitted numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996. |
|
[10] | R. K. Mohanty and U. Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives, App. Math. And Comput. Vol. (172), 1, (2006), 531-544. |
|
[11] | R. K. Mohanty, D. J. Evans and U. Arora, Convergent spline in tension methods for singularly perturbed two-point singular boundary value problems, Int. J. Comput. Math., 82 (1), (2005), 55-66. |
|
[12] | R. K. Mohanty and N. Jha, A class of variable mesh spline in compression methods for singularly perturbed two point singular boundary value problems.App. Math. And Comput. Vol. (168), 1, (2004), 704-716 |
|
[13] | A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973, |
|
[14] | R. E. O’Malley, Introduction to Singular Perturbations, Academic Press, New York, 1974. |
|
[15] | H. S. Prasad, Y. N. Reddy, Numerical Solution of Singularly Perturbed Differential-Difference Equations with Small Shifts of Mixed Type by Differential Quadrature Method, American Journal of Comput. and Appl. Mathematics, 2 (1), (2012), pp. 46-52. |
|
[16] | J. R. Quan, J.R. and C. T. Chang, New insights in solving distributed system equations by the quadrature methods-I. Analysis, Comput. Chem. Engrg, 13(1989), 779-788. |
|
[17] | J. R. Quan, and C. T. Chang, New insights in solving distributed system equations by the quadrature methods-II. Application, Comput. Chem. Engrg, 13, (1989), 1017-1024. |
|
[18] | J. Rashidinia, R. Mohammadi, M. Ghasemij, Cubic Spline Solution of Singularly Perturbed boundary value problems with significant first derivatives, App. Math. And Comput. Vol. 190, 2, (2007), 1762-1766. |
|
[19] | H. G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed differential equations, Springer, Berlin, 1996. |
|
[20] | A. N. Sherbourne, M.D. Pandy, Differential Quadrature Method in the buckling analysis of beams and composite plates. Comput Struct, 40, (1991), pp 903-913. |
|
[21] | C. Shu, Differential Quadrature and Its Application in Engineering. Springer-Verlag, London, 2000. |
|
[22] | C. Shu, and B.E. Richards, Application of Generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations, Int. J. Numer. Meth Fl, 15 (1992) 7, 791-798. |
|