[1] | Natesan, S., Vigo-Aguiar, J. & Ramanujam, N. (2003). A numerical algorithm for singular perturbation problems exhibiting weak boundary layers, Comput. Math. Appl. 45, 469-479. |
|
[2] | Robert, S. M. (1982). A Boundary-Value Technique for Singular Perturbation Problems, Journal of Mathematical Analysis and Applications, 87, 489-508. |
|
[3] | Bender, C.M. & Orszag, S. A. (1978). Advanced Mathematical Methods for Scientists and Engineers, Mc. Graw-Hill, New York. |
|
[4] | Kevorkian, J. & Cole, J. D. (1981). Perturbation Methods in Applied Mathematics, Springer-Verlag, New York. |
|
[5] | O’ Malley, R. E. (1974). Introduction to Singular Perturbations, Academic Press, New York. |
|
[6] | Nayfeh, A. H. (1973). Perturbation Methods, Wiley, New York. |
|
[7] | Smith, D. R. (1985). Singular-Perturbation Theory an Introduction with Applications, Cambridge University Press, Cambridge. |
|
[8] | Hu, X.C., Manteuffel, T.A., Mccormick, S. & Russell, T.F. (1995). Accurate discretization for singular perturbations: the one-dimensional case, SIAM Journal off Numerical Analysis, 32 (1), 83-109. |
|
[9] | Kadalbajoo, M. K. & Reddy, Y. N. (1987). Initial-Value Technique for a Class of Nonlinear Singular Perturbation Problems, Journal of Optimization Theory and Applications, 53, 395-406. |
|
[10] | Kadalbajoo M.K. & Devendra Kumar (2008). A non –linear single step explicit scheme for non-linear two point singularly perturbed boundary value problems via initial value technique, Applied Mathematics and Computation, 202, 738-746. |
|
[11] | Reddy, Y.N. & Pramod Chakravarthy, P. (2003), Method of Reduction of Order for Solving Singularly Perturbed Two-Point Boundary Value Problems, Applied Mathematics and Computation, 136, 27-45. |
|
[12] | Van Niekerk, F.D. (1987), Non linear one step methods for initial value problems, Comput. Math. Appl., 13, 367-371. |
|
[13] | Higinio Ramos (2007). A non standard explicit integration scheme for initial value problems, Applied Mathematics and Computation, 189, 710-718. |
|
[14] | Zahra, W.K., Exponential spline solutions for a class of two point boundary value problems over a semu infinite range. Numer. Algor. 53, 561-573, 2009. |
|
[15] | Zahra, W.K., Finite difference technique based on exponential splines for solution of obstacle problems. Int. J. Computer Math. 88 (14), 3046-3060, 2011. |
|
[16] | Zahra, W.K., A smooth approximation based on exponential spline solutions for non linear fourth order two point boundary value problems, Appl. Math. Comput. 217, 8447-8457, 2011. |
|